	Team SHARP
	4

ACM SIGSOFT Content Management and Generation System II

Process Plan

Team SHARP
Samuel Goshen
Leo Torbochkin
Dan Edenhofer
Nicholas Sabocheck
Dominic Holt

Last update:

May 11, 2009
Table of Contents
2Table of Contents

31. Overview

32. Goals and Scope

43. Technical Process

43.1. Process Overview

43.2. Planning

43.3. Designing

53.4. Coding

53.5. Testing

54. Deliverables

75. Risk Management

75.1. Risk Identification

75.1.1. Optimistic schedules

75.1.2. Poorly or vaguely defined requirements

75.1.3. Team members do not work together efficiently

75.1.4. The sponsor attempts to add additional features

85.1.5. The sponsor is not as available as necessary

85.1.6. Team member unexpected unavailability

85.1.7. Gold-plating of features during development

85.2. Risk Prioritization

95.3. Risk Mitigation Strategy

95.3.1 Publicizing risk

95.3.2 Control the risk

95.4. Risk Mitigation Plan

95.4.1. Poorly or vaguely defined requirements

105.4.2. Optimistic schedules

105.4.3. The sponsor attempts to add additional features

106. Schedules and Estimates

107. Measurements & Metrics

107.1. Slippage Chart

117.2. Productivity by Volume

117.3. Tools

1. Overview

ACM SIGSOFT publishes a bi-monthly hybrid Newsletter called Software Engineering Notes (SEN). The Newsletter is manually assembled by the editor, Will Tracz who receives various contributions from established column editors and other contributors who submit documents in various forms and formats. The print copy is a single pdf file. The digital copy is rendered from the single pdf file and enhanced with additional pdf files, after the necessary metadata is manually extracted. In addition, a table of contents is manually created for each issue. Last year a team of RIT students named Team SEND created a partial solution for alleviating some of the manual portions of newsletter creation. Their efforts resulted in a basic content submission capability but the composition capability was never completed.

The system has two main components: submission and composition. Team SHARP will focus on the composition component while modifying the existing submission component to be more robust. The submission component will need to be re-evaluated and re-engineered for improvements which include usability and modification to ensure a more seamless workflow between the submission and composition components.

The parts to be developed as new functionality and part of the composition component will be the automatic composition of the table of contents, table of papers, table of reports and table of abstracts. The application will allow users of the system to submit content such as column articles, letters to the editor, and other such content. This content will be accompanied by metadata, which will be necessary to automate the construction of the newsletter. Once composed, these tables will be combined into a printable document for construction of the newsletter.

2. Goals and Scope

The goal of this project is to finish creating a web-based content management system that semi-automates the composition of the SIGSOFT Newsletter. An incremental development methodology will be used to deliver working portions of functionality in phases.

Phase I:

· Rebuild current functionality in Java

· User Registration

· User Authentication

· Submission

· Content management

· Metadata submission

· Notification

· Approval

Phase II:

· Metadata extraction

· Front-matter Composition
· Back-matter Composition

· Assembly of Tables into Newsletter Skeleton

· Admin Options

Phase III:

· Notification Scheduling
· Generation in Word Document Format

· Concatenating the tables into one document
3. Technical Process

3.1. Process Overview

The SHARP team has adopted an iterative and incremental approach to planning and developing the project. The incremental approach will best fit with the customers needs, as the customer is not necessarily looking for all goals to be met and completed, but can expect new value delivered on a phased basis. The incremental approach will allow the team to split up objectives and order them to allow for the most important objectives to be completed and tested early and most thoroughly.
3.2. Planning

The project will be divided into phases, where the current phase and the next phase will be planned and architected. Once a phase has been developed, tested and deemed completed, the next undeveloped phase will be architected before work is begun on the new phase. Example: To start the project, Phase I and II will be planned and architected. Once development is finished on Phase I, Phase III will be architected before the team moves on to development on Phase II.
3.3. Designing

Each phase’s architecture will be designed separately, but with later phases kept in mind. This way, the phases will fit together and the project should incur the least amount of integration issues possible. There should be a general project design which exists on a high level so that when each Phase is in the development stage both completed phase and future phase’s architectures can be considered. This adheres to the incremental approach and also makes use of some best designing practices.
3.4. Coding

Coding for each phase will be broken down into three main areas: Presentation Layer development, Application Layer development, and Persistence Layer development. Each member of the team has been given a coding area priority. This does not mean all of their development will be done in that layer, as different phases may have an emphasis on certain layers. However, to make sure each layer is addressed in the most productive and timely manner, the team has been given an emphasis role. Each member will develop their divided coding work as well as unit test all of their code. Once they have completed their section it will be combined with other completed sections and integration testing will begin. Once all sections have been completed and tested, final phase testing will be implemented.
3.5. Testing

As previously stated, there will be many levels of testing. Unit testing will be done by the developers of the code. Integration testing will be done by the developers of each code section. Phase testing will be done by the entire team. Please see the test plan and testing documentaiton for more detailed information.
4. Deliverables
Team SHARP will use the incremental approach in order to build up functionality at each phase. Each increment will build on the functionality developed in the previous increment. We will have three release increments.

Increment 1: Rebuilding functionality

Increment 1 will focus on analyzing the old project teams’ work in order to recreate their functionality using J2EE.

This release will include:

· Login/User management

· Role based access

· User related meta-data

· Author, Affiliation

· Submission, content management

· Columns

· Letters to editor

· Papers

· Reports

· Reviews

· Call for papers

· Call for participation

· Allow metadata entry

· Title

· Digital identifiers

· Notifications for:

· Registration

· Submission

· Approval

· Rejection

· Password Reset

· Review

· Allows editors to review content

· Editors will be able to approve or reject content

Increment 2: Table Generation

Increment 2 will focus on automatically generating parts of the newsletter.

This increment will include:

· Metadata extraction

· Extracting necessary information for the tables

· Extracting Author, title, affiliation, number of pages, etc.

· Table of Papers generation

· Table of Abstracts generation

Increment 3: Making work more efficient

This release will focus on saving time for the users of the system. It will further improve on the table generation functionality as well as add additional functionality to automate making the newsletter.

This release will include:

· Enhanced automated generation

· Composition of generated materials

· Scheduled notifications
5. Risk Management

5.1. Risk Identification

5.1.1. Optimistic schedules

When using an incremental process to develop software, each increment depends on the previous one. Therefore, a schedule slippage among any increment will result in a slippage for all increments after it. Since developers usually lean toward being optimistic in their project schedules, there is a chance that slippage could force the feature set to be reduced due to lack of time, since there is little or no room to change the schedule or push back the delivery date of the system.

5.1.2. Poorly or vaguely defined requirements

The sponsor’s documentation provided to us for the system lacks detail. It will be necessary for us to communicate regularly with the project sponsor in order to ensure requirements are clear, unambiguous and complete.
Schedules created and work performed with requirements found later to be inaccurate or misunderstood could potentially result in slippage due to wasted work and time required to correct or detail the requirements.

5.1.3. Team members do not work together efficiently

It is possible that developers working together on specific modules may have conflicting visions and/or understandings as to how to implement them. This could result in modules being developed slower than originally expected.

5.1.4. The sponsor attempts to add additional features

It is possible that the sponsor may attempt to add additional features into the project during development. It will require additional work time to consider these additional features and, if accepted, the project’s schedule must be adjusted in order to implement them.
5.1.5. The sponsor is not as available as necessary

It is possible that the sponsor may not be as available as necessary during the project. This will give us less time to solidify an understanding of the requirements and ask questions as we detail them according to that understanding.

5.1.6. Team member unexpected unavailability

It is possible due to certain conditions (class work, exams, unforeseen circumstances, and so on) that one or more team members may not be as available as expected during certain periods of the project or not available at all.

5.1.7. Gold-plating of features during development

It is possible that one or more team members may attempt to gold-plate (add additional functionality to) features during the development process, resulting in a longer development time for those features and possibly slippage.
5.2. Risk Prioritization
Table 5.1: Risk-Assessment

	Risk
	Probability of Loss
	Size of Loss (weeks)
	Risk Exposure (weeks)

	Optimistic schedules
	60%
	3
	1.8

	Poorly or vaguely defined requirements
	40%
	3
	1.2

	The sponsor attempts to add additional features
	40%
	2
	.80

	Gold-plating of features during development
	25%
	1
	.25

	The sponsor is not as available as necessary
	20%
	1
	.20

	Team member unexpected unavailability
	20%
	1
	.20

	Team members do not work together efficiently
	20%
	1
	.20

5.3. Risk Mitigation Strategy

As stated in the previous section, risk mitigation will be done based in the Risk-Assessment Table. Below are some risk mitigation tactics that will be used throughout the project.

5.3.1 Publicizing risk

The risks that appear earlier in the document will be made known to all team members, the faculty coach, and the sponsor early in the project. Publicizing the risks to all those involved with the project will allow them to continuously try to reduce the probability of the risk occurring. Additionally, if the sponsor and faculty coach are informed of the most pressing risks upfront, there will be less surprise involved should one of the risks occur and force a reduction in the feature set during the development process.

5.3.2 Control the risk

All risks with an exposure equal to or greater than 0.5 weeks will be controlled. A risk mitigation plan will be put in place to address these risks as efficiently and effectively as possible should they occur, as they occur.

5.4. Risk Mitigation Plan

All risks with an exposure equal to or greater than 0.5 weeks will be controlled through a planned strategy stated in this section. A mitigation plan provides a tool to efficiently and effectively address high-priority risks as they occur. The sections of the mitigation plan are ordered by the overall exposure related to each risk, starting with that of the highest exposure.

5.4.1. Poorly or vaguely defined requirements
Any poorly written and/or vague requirements, or those that lack detail, will be communicated with the sponsor until they are understood and can be detailed appropriately. Any assumptions made in the requirements will be given to the sponsor for review.
5.4.2. Optimistic schedules
The scope of each phase will be limited to requirements that are deemed critical to the success of the project. These requirements must be understood and detailed appropriately so that they are clear, concise, unambiguous and complete. This approach will allow the team to complete requirements with great importance first.
5.4.3. The sponsor attempts to add additional features

Any additional feature desired by the sponsor will be put through an approval process and only accepted if the feature is deemed high-priority and the schedule can be changed to accommodate the feature without forcing other high-priority features to be cut. The sponsor will be kept in check as far as feature creep is concerned.
6. Schedules and Estimates

The schedule of our senior project will be an on-going issue that we have to address. This is due to the fact that our project is being developed through an incremental approach. As a group we have come up with a tentative idea of when we want the 3 phases of our project to be completed.

Phase I: End of week 6 quarter 1

Phase II: End of week 3 quarter 2

Phase III: End of week 10 quarter 2

At the present time, our group has decided that each person should be working on this project approximately 15 hours per week to reach the goals of our schedule. Also we are planning on using the break periods over the quarters as “non-school” time in which those weeks are not counted as part of the 20 weeks we have to finish our tasks.
7. Measurements & Metrics
7.1. Slippage Chart

Since we are using an incremental approach as our process, a slippage chart will be kept to make sure we complete the tasks we have deemed necessary to add value in each increment and release. We will show the number of days that we are ahead/behind schedule based on planned dates for reaching milestones. Each increment is a particular milestone to be reached. We will identify target dates for reaching each milestone, track actual dates of reaching each milestone, and plot the difference.

7.2. Productivity by Volume

After the completion of each week, the total lines of source code produced in a given week will be recorded in a table and then compared to the previous week. In this way, we will be able to chart our productivity in any given week.
7.3. Tools

Excel will be used to gather and display data for both the slippage chart and the productivity by volume.
[image: image1.png]

- 4 -

