Design Document
for

SISCalendar

Prepared by Zach Masiello
Ethan Mick

Michael Caputo

Shawn Thompson
Organization: SIS.io



Table of Contents

1. Introduction
2. System Overview

2.1 High Level Description

2.2 Technology Stack
3. Technical Approach
3.1. Tools
4. System Architecture

3.1 High Level Architecture

3.2 Deployment
3.3 SubSystem Design

5. Class Diagrams

5.1. Schedule Subsystem Diagrams

5.2. SISCalendar application flow

5.3. Authentication Subsystem Diagrams

6. Sequence Diagrams
6.1iCal

6.2 Login

Revision History

based on code review
feedback

Name Date Reason For Changes | Version

Initial 10/16/13 First Version 1.0

Revision 1 10/29/13 Updated Class 1.1
Diagrams

Revision 2 04/2/14 Updated diagrams 1.2

Revision 3 04/12/14 Updated diagrams 1.3



https://docs.google.com/a/g.rit.edu/document/d/s6KonVIQhaJZyZynFIdo41w/headless/print#heading=h.nxt1ragtputz
https://docs.google.com/a/g.rit.edu/document/d/s6KonVIQhaJZyZynFIdo41w/headless/print#heading=h.53chiyua7795
https://docs.google.com/a/g.rit.edu/document/d/s6KonVIQhaJZyZynFIdo41w/headless/print#heading=h.gxm80rs0e55c
https://docs.google.com/a/g.rit.edu/document/d/s6KonVIQhaJZyZynFIdo41w/headless/print#heading=h.v5x2142y44z
https://docs.google.com/a/g.rit.edu/document/d/s6KonVIQhaJZyZynFIdo41w/headless/print#heading=h.oewat24q9ot1
https://docs.google.com/a/g.rit.edu/document/d/s6KonVIQhaJZyZynFIdo41w/headless/print#heading=h.egrp4j9f2qor
https://docs.google.com/a/g.rit.edu/document/d/s6KonVIQhaJZyZynFIdo41w/headless/print#heading=h.gnyotx4c4cr6
https://docs.google.com/a/g.rit.edu/document/d/s6KonVIQhaJZyZynFIdo41w/headless/print#heading=h.3doekzutv09j
https://docs.google.com/a/g.rit.edu/document/d/s6KonVIQhaJZyZynFIdo41w/headless/print#heading=h.rn6gp57ka1jm
https://docs.google.com/a/g.rit.edu/document/d/s6KonVIQhaJZyZynFIdo41w/headless/print#heading=h.gzlc0vdoap1l
https://docs.google.com/a/g.rit.edu/document/d/s6KonVIQhaJZyZynFIdo41w/headless/print#heading=h.2g4cfs66lfv9
https://docs.google.com/a/g.rit.edu/document/d/s6KonVIQhaJZyZynFIdo41w/headless/print#heading=h.z7p41ink6fui
https://docs.google.com/a/g.rit.edu/document/d/s6KonVIQhaJZyZynFIdo41w/headless/print#heading=h.zfsaat32vuw7
https://docs.google.com/a/g.rit.edu/document/d/s6KonVIQhaJZyZynFIdo41w/headless/print#heading=h.jzcswwz67ck
https://docs.google.com/a/g.rit.edu/document/d/s6KonVIQhaJZyZynFIdo41w/headless/print#heading=h.jke75apsw8f4
https://docs.google.com/a/g.rit.edu/document/d/s6KonVIQhaJZyZynFIdo41w/headless/print#heading=h.fsy9t73bm578
https://docs.google.com/a/g.rit.edu/document/d/s6KonVIQhaJZyZynFIdo41w/headless/print#heading=h.yzbiz2bmmpvn

1. Introduction

The purpose of this document is to outline the design for SISCalendar. This will include a view
of the highlevel architecture as well as the breakdown of the internal subsystems. UML class
and sequence diagrams will be provided to show how the system will be put together and how
data will flow through the system. There will also be discussion on the technologies that we will
be using throughout this project. This document provides an outline of the user interface to
demonstrate how it will be formatted. Additionally, there is a section that makes use of a
requirements traceability matrix, which will make it easier to trace system features and designs
back to the requirements.

2. System Overview

2.1 High Level Description

text

2.2 Technology Stack



3 JSP jQuery Bootsrap

S

71}

5

E

<

o

3 POJO

=

n > w

g g2 caldi sotle-ani SISGateway RIT Interactive
T e S ) googie-ap web services Maps AP
> o =

m ¢y ~

View
All the tools and technologies used to render the view for the client side of SISCalendar

JSP - Java Server Pages. High level abstraction of java servlets that can be cached, changed,
and rendered at runtime.

JQuery - A javascript library that allows for easier manipulation of the Document Object
Model, simpler AJAX calls, and animations.

Bootstrap - A CSS library that allows easy templating of websites and includes built in
responsiveness.

Actions
All the tools and technologies that handle the communication between the model and
view layers.

Struts 2 - An MVC framework that allows simple creation of enterprise-grade web applications.
The “controller” item in Struts 2 is an action, an out of the box class that can be used to send
information to the view to be rendered.



Model

All the tools and technologies that are used to store data needed by SISCalendar to
operate.

POJO - Plain Old Java Object. SISCalendar stores all of its data (Course information, exam
information, user data) as java objects that can be easily passed to and manipulated by the
Actions layer.

Business Services / Libraries
All of the external applications and libraries that SISCalendar utilizes.

iCal4j - A java library that transforms java objects into iCal format, and can create an iCal file.
google-api - Google’s custom API that handles integration with any of their services.
SISCalendar relies on this library to automatically upload class information to a student’s Google
Calendar.

SISGateway Web Services - The API that SISCalendar uses to access all of the course
information related to a students account.

RIT Interactive Map - RIT’s API that allows information to be displayed in Google Maps with an
overlay over RIT. SISCalendar uses this information to display the location of classes as well as
display information about various buildings.

Server
All the tools and technologies that are installed on the servers running SISCalendar

Apache Tomcat - The web server that is used to run the SISCalendar application.

Linux - The OS of the server that SISCalendar is hosted on.

ANT - A Java library used to make the build and deployment process easier. Creates war files
from the struts application.

3. Technical Approach

3.1. Tools

There are a number of tools and technologies that this project will utilize for development.
e Server Side

Java 1.7.0_40 environment

Apache Struts 2.3.15.2 framework

Apache ANT

Eclipse Kepler 4.3 IDE

Git repository (on Github)

O O O O O



http://www.google.com/url?q=http%3A%2F%2Fwww.oracle.com%2Ftechnetwork%2Fjava%2Fjavase%2Foverview%2Findex.html&sa=D&sntz=1&usg=AFQjCNEIg0AGrZPxGoyJH2n4B6KbnTSLaA
http://www.google.com/url?q=http%3A%2F%2Fstruts.apache.org%2Frelease%2F2.3.x%2Findex.html&sa=D&sntz=1&usg=AFQjCNGRT72q-8psvY3oI4NidUzS7kcw5Q
http://www.google.com/url?q=http%3A%2F%2Fant.apache.org%2F&sa=D&sntz=1&usg=AFQjCNFES7LK4aOUN0h6wxhH2k7ycUHGRA
http://www.google.com/url?q=http%3A%2F%2Fwww.eclipse.org%2Fdocumentation%2F&sa=D&sntz=1&usg=AFQjCNFIOGPgPcDY4eSYmfkYMSsD65iRQA
https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2F&sa=D&sntz=1&usg=AFQjCNHReqsuKT6C86HcgL4TbSevF24rxQ

e Client Side

o Jquery 2.0.3
o normalize.css

We have decided to use the Struts 2 framework for our development for a number of reasons.
Struts 2 is the most up-to-date (stable) version of the Struts framework currently released by
Apache (updated as of 09-21-13). This means that problems stemming from the framework
itself should be minimal. Struts is also one of the approved technologies given to the student
team as it is currently already supported by ITS in the Team Builder project. The Team Builder
project has already solved the problem of Shibbeloth authentication in the Struts 2 framework,
which will allow the SIS.io team to reuse code shortening the expected schedule and avoiding
unforseen challenges caused by Shibbeloth authentication with new technologies.

Struts 2 also provides a Model-View-Controller paradigm to applications developed in it. This will
allow the SIS.io team to create a clean, reusable, and easily extendable application within the
confines of the schedule.

Apache Ant will be used in the creation of .war file builds for development, testing, and
production. Ant is one of the ITS approved libraries for creating java builds for deployment, as
well as being the library used by the Team Builder application. SIS.io will be able to utilize Team
Builders Ant scripts as examples when constructing our own, making the process as a whole
easier.

Development for SISCalendar will take place on each students own personal computer. Eclipse
Kepler 4.3 shall be used as the integrated development environment. Eclipse was chosen
because it has plugins that will allow easy integration for both the Struts framework and also
Apache Ant to aid in the development and deployment processes.

SIS.io will use a git repository to store our code. A master branch will be stored on the account
provided by RIT ITS, and each SIS.io developer will maintain their own local copy and feature
branches.

For rendering and interacting with the client side, SISCalendar will utilize JQuery and
normalize.css. JQuery will allow the manipulation of data and Ul elements easily and efficiently
on the client side. Normalize.css will be used to ensure SISCalendar has cross-browser
consistency when the Ul is rendered.

4. System Architecture

3.1 High Level Architecture

The SISCalendar application will interact with several major components. These components
will be the Shibbeloth Authentication System (used to authenticate and authorize a user before


http://www.google.com/url?q=http%3A%2F%2Fjquery.com%2F&sa=D&sntz=1&usg=AFQjCNGtx3hYIQpONgUoQvrnRm8YULAPpA
http://www.google.com/url?q=http%3A%2F%2Fnecolas.github.io%2Fnormalize.css%2F&sa=D&sntz=1&usg=AFQjCNE34_OBMoiAna2fXYgmcPLEQ2txEw

attempting to download a calendar), the SIS Gateway API (used to retrieve all calendar data for a
given user), and the RIT Interactive Map API (used to generate a clickable URL to display a
specific building on RIT’s campus). The application will also interact with Google’s Calendar API
to allow students to automatically load their class schedule into their Google calendar.

Ty
A

SIS
—®| Gateway

Web browser API
‘\-...____‘_'____..-J

SIS Calendar

Application —
e A

RIT
™ |nteractive

Map AP
l\‘""'l-u_._._,_._—-/

Ty
A

Mobile Device

Shibbeloth
Authentication ___ w Google

Calendar
API

~—

System

3.2 Deployment

Deployment of the SISCalendar project will follow the precedent set by the Team Builder project.
War files will be built using ANT scripts to make deployment to different environments as simple
as possible.

To deploy wiithout SVN

1. Run the ant build script - Hopefully you don't run into problems with this step

2. scp the file. It will be dist/sisCalendar.war to <username>@siscalendardev.rit.edu:~/
3. ssh into <username>@siscalendardev.rit.edu

Run these commands:

4. sudo su - webapps

5. cp /home/<username>/sisCalendar.war ~/staging/sisCalendar.war

6. bin/cluster/chgMgmt/deploySisCalendar

To deploy wiith SVN

1. Run the ant build script

2. copy the dist/sisCalendar.war file into our svn in the trunk/dev/release/ folder
3. use the command svn ci -m "<CHECKIN MESSAGE>"

3. ssh into <username>@siscalendardev.rit.edu

Run These commands:



http://www.google.com/url?q=http%3A%2F%2Fsiscalendardev.rit.edu%2F&sa=D&sntz=1&usg=AFQjCNGPgSmw5L0gy3yHPwwFVDe34fx8pg
http://www.google.com/url?q=http%3A%2F%2Fsiscalendardev.rit.edu%2F&sa=D&sntz=1&usg=AFQjCNGPgSmw5L0gy3yHPwwFVDe34fx8pg

4. sudo su - webapps
5. bin/cluster/chgMgmt/getReleasedSisCalendar
6. bin/cluster/chgMgmt/deploySisCalendar

the logs are at: ~/instances/sisCalendarCluster/node1818/logs/catalina.out

This is the command used to view the logs:
tail -f -n 100 ~/instances/sisCalendarCluster/node1818/logs/catalina.out

3.3 SubSystem Design

There will be 2 main subsystems in this application. Those subsystems are the Authentication
subsystem, and the Schedule subsystem.

5. Class Diagrams

5.1. Schedule Subsystem Diagrams

Class diagram for the main Schedule subsystem. This is the system responsible for retrieving
class and map information and manipulating that data to something usable by the user.

<<Java Class>>
<<Java Class>> (3 JSONParser
<<Java Class>> ®User model
®BuildingsCacheJob madel -7
CacheJobs )
<<Java Class>> $
OHolidayCalendarCachedob| <<Java Class>> <<Java Enumeration> _—
Cachelobs B © Gateway @Day -days <=Java Class>>
7 gateways modsl 0.* (& MeetingPattern
as A model
<<Java Class>> H ; T
@ preloadScheduleFilter -meetingPattern, o.*
fiters \ k i
<<Java Class=>

®HolidayCalendar

model

|
<<Java Class>>

\ (® GCalBuilder
-halidays |0.* model

<<Java Class=>
BHoliday

model

|
<<Java Class=>
®Course

model

—ﬂnalExam\\({J.J

<<Java Class>>
®Exam

modal




5.2. SISCalendar application flow
This diagram shows the basic flow of events within the SISCalendar application. Note that a user

will initially enter from the Authentication subsystem, reaching Index.jsp once they are properly

authenticated.

Authentication
Subsystem

Basic SISCalendar flow

GatewayAction Index.jsp

JSonParser CalBuilder gCalBuilder
Google
Exam Course Auth
Servers
MeetingPattern

5.3. Authentication Subsystem Diagrams
Initial class diagram of the authentication subsystem. This is based off of the authentication

system put into place and currently used by the TeamBuilder project.



<<abstract>>

<<abstract>>

Schedule
Subsystem

6. Sequence Diagrams

6.1 iCal

AbstractSecurityFilter ShibSignOnHandler Shibutl
ShibbelothSecurityFilter SingleSignOnHandler SingleSignOnUtil
User

ShibHeader

ShibProperties

ShibFields



|
Ra)

Download iCaly

User

—

MainAction

new MainAction()

—

CalBuilder

new calBuilder()

p—

addClasses( classes

getlCS()

6.2 Log in

return SUCCESS

return iCal

addClass(course)




AuthenticateUser SingleSignOn Shibboleth
— Action Handler Services

(-
0

Enter Login Credentials N

newAuthenticateUserAction . ——

I

I

I

I

I
A

= e - e
isUserLoggedIn() cheekSession
«— — — — —
] — — e — — ]
false result
performSingleSignOn() checksession
— — — — — — | T Teswt T |
true
> I S ——
SUCCESS
Main.jsp
[

.

B



6.3 Fetch Schedule

PreloadScheduleFilter Gateway JSONParser

I

/ I I
——
I I
—Login— I |
synchronoushGetClassesForCurrentStudent(request} ——
new JSONParser()
User
getTerms()

parse(term, isMobile, buildings)

return: courses

return: courses

Session.set('courses"”,courses)

—




