::

TCN Text Extraction Tool

Acceptance Test Plan

Prepared by:

Adam Kreiss

James Gehring-Anders

Theodore Wilson

Team Spider

::

[image: image1.png]



[image: image2.jpg]Software Engineering





May 16, 2006
Revision 1.0

Table of Contents

1Table of Contents


2Revision History


3Overview


3Objectives


3System Description


4Project Team


4Roles


4Resources


4Tools


5Acceptance Test Plan


5Scope


5Testing Procedures


5Unit Testing


5Integration Testing


7Project Management


7Test Deliverables


7Unit Testing


7Integration Testing


7System Testing


7Testing Tasks


7Schedule





Revision History

	Name
	Date
	Reason For Changes
	Version

	Adam Kreiss
	1/19/2006
	Initial version
	0.5

	Adam Kreiss
	1/26/2006
	Added content to complete initial draft
	0.8

	James Gehring-Anders
	2/05/06
	Changes suggested by Adviser
	1.0

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	


Overview

This Acceptance Test Plan document outlines the procedures necessary to verify that the completed version of the Text Extraction Tool meets the requirements set forth by the Telecommunication Consultation Network (TCN) and described in detail in the TCN Requirements Specification document.  The Acceptance Test Plan also ensures that all components of the system are tested.

Objectives

The Telecommunication Consultation Network (TCN) has been developing tools under the KnowledgeTrac name to further its goals of document management and relational connections of client data to contact information.  One component of the KnowledgeTrac system  is known as the KnowledgeTrac Spider.  The KnowledgeTrac Spider indexes web documents.  In the future TCN would like to have the KnowledgeTrac Spider tool also index common business documents that are linked to on a web page.  To further this end, TCN has approached the Software Engineering department at the Rochester Institute of Technology about enrolling a senior project team to develop a tool (the Text Extraction Tool) that can receive a file, determine its type, and extract text from the file.

System Description

Currently TCN uses KnowledgeTracTM Spider to index web pages.  The functionality provided by the Spider tool supports all web-based formats.  It does not support other popular file formats, such as PDF and Microsoft document formats.  When the KnowledgeTracTM Spider tool detects a link to an unsupported document type it ignores it.  The Text Extraction Tool is being built to address this problem.

The Text Extraction Tool, when complete, will be able to extract the text from a number of popular document formats.  The KnowledgeTracTM Spider tool will use the Text Extraction Tool to get text from the file and index the text along with the gathered web-based text.

Project Team

Roles

The table below describes each team member’s role in the testing of the Text Extraction Tool.

	Name
	Role
	Responsibilities

	Adam Kreiss
	System Developer/Tester
	· Perform unit testing on personal code

· Perform integration testing between different components of the Text Extraction Tool

	James Gehring-Anders
	System Developer/Tester
	· Perform unit testing on personal code

· Perform integration testing between different components of the Text Extraction Tool

· Ensure acceptance testing is completed and all components pass

	Ted Wilson
	System Developer/Tester
	· Perform unit testing on personal code

· Perform integration testing between different components of the Text Extraction Tool

· Perform integration testing with the KnowledgeTrac™ Spider Tool

	Daniel Erb
	TCN KnowledgeTrac™ Spider Testing Contact
	· Aid Team Spider in integration and acceptance testing between the Text Extraction Tool and the KnowledgeTrac™ Spider tool


Resources

KnowledgeTrac™ Spider Tool – We will need access to the tool to complete our system testing.

Tools 

NUnit – NUnit is the .NET compatible testing framework we will be using to automate most of our tests.

Acceptance Test Plan

Scope

This test plan will allow the demonstration of the quality of the Text Extraction Tool.  The Test Plan will apply only to the Text Extraction Tool and parsing modules completed by Team Spider.  The testing assurances provided are not meant to guarantee what happens to extracted text after the Text Extraction Tool returns it to a user, or to provide a guarantee about the retrieval of files by the KnowledgeTrac™ Spider from client sites and repositories.  This Test Plan also does not apply to any future parsers developed after the completion of work with Team Spider.

This Test Plan assumes that the Text Extraction Tool will be run on a Windows 2000/2003 Server machine with hardware to meet the recommended requirements of those operating systems.  Any networked systems the Text Extraction Tool will have to work with to access a file are also assumed to meet the same specifications.  

Testing Procedures

The testing of the Text Extraction Tool will be completed on three levels, Unit Testing, Integration Testing and System Testing.  Each level will correspond to the level of the product being worked upon.  When combined, the tests will provide a high level of assurance of the quality of the system.

Unit Testing

Unit testing is the idea of verifying the functionality of the smallest units of a software system.  Often, unit tests involve only a few functions.  The idea is that by dissecting the problem of debugging an entire software system into much smaller pieces, we will be able to apply more focused tests and avoid long chains of software failures.

Unit testing will be completed by each developer of Team Spider on the code they develop.  The level of testing to be completed will be determined during the design of that specific module of the product.  The unit testing will be white box testing.  While unit testing, developers will also track the code coverage that their tests achieve.  All modules should have 100% procedure coverage (the calling of every method has been tested) and 70% line coverage (execution of individual lines of code).

The unit tests will also include boundary testing to use the time spent testing most efficiently.  Boundary testing involves grouping inputs into sets where the same behavior is expected and testing the boundaries between these sets more heavily than the middle.  For example, the sets for an addition program might be negative numbers, zero, and positive numbers.   In the case of the Text Extraction Tool, boundary testing will verify that file size limits are treated correctly (including values minutely under and above a given limit).

The test cases will be incorporated into a testing suite called NUnit that will allow the quick and easy automated regression testing of the code.  Regression testing is the idea of running tests on changed code to make sure alterations did not have unexpected effects.  The test cases and results will be provided along with the product at completion.

Integration Testing

Integration testing will take place between all interacting modules in the Text Extraction Tool.  The modules are listed below.

· Core Code View/Controller Layers

· Core Code Model Layer

· Each individual parser

The integration testing upon the inclusion of each module will involve confirming that modules invoke and return results to each other correctly.

System Testing

System testing will occur between the Text Extraction Tool and the TCN KnowledgeTrac™ Spider software.  The purpose of this testing is to ensure that the Text Extraction Tool meets the interface and functional expectations of the KnowledgeTrac™ Spider tool.  As stated above in the scope, this will not include testing of TCN’s software.

Project Management

Test Deliverables

Unit Testing

The tests performed for each module will be documented in an Excel spreadsheet.  The description will include the class of inputs being tested for boundary testing, the pass/fail result of the test, a short description of what exactly is being tested, and a test case number for identification purposes.  The total code coverage statistics (procedural and line) and the percentage of passed tests will also be calculated for each module.

Integration Testing

The tests performed while integrating the individual modules will be documented in a Word document as opposed to an Excel spreadsheet.  This is because of the relative fewer number of tests and the higher level of detail desired in the description of each test.  

Each test will be described in full, including the reasoning behind the test, the description of the test, the area of the interface that was tested and the results of the test.  As the modules are integrated together, the code coverage and pass/fail results from the unit tests will be aggregated together until the statistics for the Text Extraction Tool as a whole are known.

System Testing

The system testing documentation will describe our tests and results (similar to Integration Testing documentation) when integrating the Text Extraction Tool with the KnowledgeTrac™ Spider tool.  The documentation will include the verification of all parameters offered by the Text Extraction Tool interface as well as the verification of the ability to receive files from the KnowledgeTrac™ Spider tool.

Testing Tasks

1. Integrate NUnit testing framework – Download the DLL files and become familiar with the functionality offered.  Determine the best way to perform regression testing.

2. Identify a testing statistics library – For determining code coverage

3. Procure testing documents – Sample documents in the formats we are parsing

4. Create test documentation templates – Create document templates for unit and integration/system testing results

Schedule

The testing schedule can be found in the Project Schedule section of the Project Plan.


