TCN Text Extraction Tool

Design Specification

::

TCN Text Extraction Tool

Design Specification

Prepared by:

Adam Kreiss

James Gehring-Anders

Theodore Wilson

Team Spider

::

[image: image11.png]

[image: image12.jpg]Software Engineering

May 16, 2006
Revision 1.1
Table of Contents

2Table of Contents

3Revision History

4Overview

4Introduction

4System Overview

4Design Considerations

4Assumptions and Dependencies

4Related software or hardware

4Goals and Guidelines

6High-Level Design

6Architectural Strategies

6System Architecture

7Complete Class Diagram

8Detailed Design

8Component: Parser

9Component: Logging

10Component: Controller

11Appendix A: Full Class Diagram

12Appendix B: Sequence Diagrams

12Common Startup Diagram

12UC01 – Adding a Parser

13UC02 – Removing a Parser

14UC03 – Extract Text From a File

Revision History

	Name
	Date
	Reason For Changes
	Version

	Adam Kreiss
	1/12/2005
	Initial version
	0.5

	James Gehring-Anders
	1/16/2005
	First Draft
	1.0

	James Gehring-Anders
	1/18/2005
	Completion of Detailed Design
Added UML Diagrams
	1.1

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

Overview

Introduction

This document demonstrates Team Spider's proposed solution to the problem of extracting text from a large number of file formats. This document is intended as a guide to understanding the Text Extraction Tool's high level design, as well as the issues and rationale behind that design. It will also act as a reference for the project's implementation phase.

The intended audience of this document is the three members of Team Spider, Prof. Reddy, and the contacts for the Telecommunication Consultation Network (TCN).

The Text Extraction Tool definitions and purpose statement are available in both a summarized and detailed form in the TCN Project Synopsis TCN Requirements Specification documents available on the Team Spider website at http://www.se.rit.edu/~spider/deliverables.html.
System Overview

The Text Extraction Tool is expected to be given the location of a local file. With this it will determine the file type and attempt to parse the user-readable text from the file and return the text from the document to the calling process. There are a number of different file formats to be initially implemented, and it can be assumed the list will grow as both new versions of existing documents as well as entirely new formats are developed.

Design Considerations

Assumptions and Dependencies

· The Text Extraction Tool will be called upon by another tool belonging to TCN: the KnowledgeTracTM Spider. The interface between the Text Extraction Tool and the KnowledgeTrac™ Spider must be finalized prior to implementation.
· All work performed by the Text Extraction Tool will occur in a local environment. There will be no support provided for remote interactions.

· The Text Extraction Tool will be developed in VisualBasic.NET.

Related software or hardware

The Text Extraction Tool will be be used by the TCN KnowledgeTrac™ Spider Tool.

The Text Extraction Tool will be developed using VisualBasic.Net. Visual Studio .NET will be the development IDE.

The Tool will be operating in a Windows 2000 and/or Windows 2003 Server environment.

Goals and Guidelines

A requirement of the Text Extraction Tool is the capability to handle numerous and varied file formats. Due to the large set of file formats TCN would like to be supported and the limited time available to Team Spider to develop these parsers, the most critical design consideration of the Text Extraction Tool is its modifiability. The interface for the parsers must be general enough to handle the parsing of unrelated formats and still allow the process of implementing and deploying new parsers.

A second design consideration is maintaining a strict separation between functionality and the user interface. In addition to helping achieve modifiability, a separated UI layer will help achieve a low level of coupling with the KnowledgeTrac™ Spider tool. The interface being developed will be used primarily as a test platform for the underlying parsing functionality. It cannot be allowed to influence the core file identification and parsing functionality.

Aside from the primary goals of modifiability and integrability we also put heavy consideration into the testability of the Text Extraction Tool. This will include unit testing functionality implemented within each class as well as more importantly a testing interface. This testing interface will be used to test the system as a whole, to ensure correctness.

The actual parsing component of the system is intended to be as cohesive as possible. By leaving all functionality that is not essential to the actual parsing of a file, we allow for a simpler parsing component that can be extended easily. This also reduces the time to develop future parsers, since they will not have to reinvent functionality that is the same across all the parsers.

One attribute that the Text Extraction Tool does not claim to possess is security. There have been no extensive measures to prevent malicious use of the Text Extraction Tool outside what is inherently provided by the .NET libraries. This was decided because the product is going to be used internally by TCN. The potential of malicious code may be introduced into the Text Extraction Tool through adding new parsing libraries or trying to parse infected documents. No design considerations have been implemented to counter these attack routes. The Text Extraction Tool assumes TCN will verify document integrity before parsing. The Text Extraction Tool will also assume that all additional parsing libraries not provided by Team Spider come from a trusted source and will interoperate with the Text Extraction Tool in the proper way.

High-Level Design

Architectural Strategies

The most notable strategy being applied is the classic Model-View-Controller (MVC) pattern. As discussed above, the use of MVC will reduce the coupling and complexity of the individual system components and improve the modifiability of the Text Extraction Tool.

Several strategies will be used to improve the Text Extraction Tool's modifiability:

· Maintain the file identification algorithms separate from the parsing algorithm. This is an abstraction of common services

· Ideally the only component that will need to be implemented when adding a parser is the parsing component itself.
· Calls to a parser will go through a simplified interface; most methods pertaining to parsing will be kept private to improve encapsulation of the parsers as well as reduce interface requirements.
· Use of the controller as a go-between will keep the user interface out of the parsing modules.
System Architecture

The Text Extraction Tool will have three main components: a user interface component (View), the parsing module (Model), and the controller to act as the point of contact between the parsing module and the outside world (Controller).

There will be two interfaces developed. The first will be a graphical user to be used for integration, system, and acceptance testing. The second will be the interface used by the KnowledgeTrac™ Spider tool. Regardless of the interface being used, all requests will be passed to the controller. This isolates the parsing module from interface changes, while shielding the user from low-level exceptions thrown by the parser. The controller will coordinate requests between the user interface and the parsing module. The parsing module will consist of objects to handle the two tasks critical to parsing: file identification, and opening the file and parsing text.

A fourth and pre-existing component is the KnowledgeTrac™ Spider tool. Team Spider will not perform any implementation or design work on this component, but will have to keep in mind the need to define and test interfaces between it and the Text Extraction Tool.

Complete Class Diagram

[image: image1.emf]TCN Text Indexing Tool

Model

Controller

View

TCN Knowledge Trac

TM

(External System)

Main Control

Logger

Parser Dynamic Loading

Interface

Detailed Design

Component: Parser

[image: image2.emf]+ToString() : String

+canParse(in filename : String) : Boolean

+parse(in filename : String) : ExtractedText

Parser

+ParserWord()

ParserWord

+ParserPDF()

ParserPDF

+ParserETC()

ParserETC

Definition

Parses a file and inserts its text into a data object for return.

Responsibilities

Each parser implementation will:
· Determine if it is capable of parsing a given file
· Parse the given file to build a data object

· Throw ParserExceptions when errors occur
Composition

The Parser module implements a Strategy design pattern, which is a pattern that defines a family of algorithms, encapsulates each one, and makes them interchangeable. Strategy lets the algorithm vary independently depending on which type of file is being parsed. Parsers can throw ParsingExceptions, and return ExtractedText objects.

Processing

Refer to Use Case 03 (UC03) in the Requirements Specification for details on a parsing session.

Interfaces

Specific parsers will be created and passed their inputs from the MainControl. Their exceptions and outputs will also be passed out to the controller..
Component: Logging

[image: image3.emf]+Log(in e : Exception<unspecified>)

-FILENAME : String

Logger

Definition

Monitors a parsing session, recording the details of any exceptions thrown.
Responsibilities

· Creates a text file to use as a log

· Appends to text file if already present

· Records each Exceptions type, time of occurrence, associated error code, and most recent portion of the stack trace associated with the exception

· Nothing will be logged for successful parsing sessions that have no exceptions
Composition

A logger that is called by the MainControl.
Processing

An incoming call to the Text Extraction Tool contains an optional parameter that can turn on or off logging. If the parameter is set to on, then the MainControl will forward any Exceptions that occur to the Logger, which will record them to a text file.
Interfaces

Activated and forwarded exceptions from the MainControl.

Component: Controller

[image: image4.emf]+MainControl(in maxFileSize : Integer, in timeout : Integer, in loggingEnabled : Boolean)

+extractText(in filename : String)

+addParser(in filename : String)

+removeParser(in fileType : String)

-maxFileSize : Integer

-timeout : Integer

-loggingEnabled : Boolean

MainControl

-logs

1

-loader 1

-parsers 1

-interface

1

Definition

Abstraction layer between the Text Extraction Tool’s parsing module and the external user interface.
· Responsibilities

· Shield parsing, loading, and logging components from interface changes
· Coordinate requests through the activation of the Loader, the running of Parsers, and the recording of ParserExceptions

· Abstract the coordination of components so that any external object, either interface or system, can interact with the Text Extraction Tool’s functionality

· Shield interface/external system from any type of exception

Composition

A single object that is created when a Text Extraction Tool is called for. Implements the design pattern.
 Processing

There are two deliberate steps for every new Text Extraction Tool:

1. Activate the DynamicLoader so that it can assess which parsers are present and available to use.

2. Call upon individual parsers to find one that can handle an incoming file.

If specified by incoming arguments, the MainControl will forward the details of ParsingExceptions to the logging component; otherwise, it will handle the exception on its own.
Interfaces

An external system (specifically KnowledgeTrac™) or user interface provide the inputs. Coordinates Logger, DynamicLoader, and the Parser components.
Appendix A: Full Class Diagram

[image: image5.emf]TCN Text Indexing Tool

Model

Controller

View

+extractText(in filename : String, in maxFileSize : Integer, in timeout : Integer, in loggingEnabled : Boolean)

+addParser(in filename : String)

+removeParser(in fileType : String)

TextExtractionTool

+MainControl(in maxFileSize : Integer, in timeout : Integer, in loggingEnabled : Boolean)

+extractText(in filename : String)

+addParser(in filename : String)

+removeParser(in fileType : String)

-maxFileSize : Integer

-timeout : Integer

-loggingEnabled : Boolean

MainControl

+canParse(in filename : String) : Boolean

+parse(in filename : String) : ExtractedText

Parser

ParserETC

ParserPDF

ParserWord

+Log(in e : Exception<unspecified>)

-FILENAME : String

Logger

+ParsingException(in message : String)

+GetMessage() : String

ParsingException

-mainController 1

-logs

1

-loader 1

+addParser(in filename : String)

+removeParser(in fileType : String)

+initialize() : Parser

-createParsers()

+createParser(in fielname : String)

DynamicLoader

+append(in text : String)

+extractedText : String

ExtractedText

* -parsers

Appendix B: Sequence Diagrams
Common Startup Diagram

[image: image6.emf]TCN Text Indexing Tool (Common Startup)

User

MainControl

MainControl(maxFileSize, timeout, loggingEnabled)

DynamicLoader

initialize:=initialize()

createParsers()

For each parsing dll

found in the parsing

folder it creates the

parsing class to be

used by the main

control

parsers

UC01 – Adding a Parser

[image: image7.emf]TCN Text Indexing Tool

(UC01 -Adding a Parser)

User

MainControl

addParser(filename)

DynamicLoader

addParser(filename)

createParser(fielname)

Reads the dll given in

the filename and creates

the Parser class and

returns it.

parser

UC02 – Removing a Parser

[image: image8.emf]TCN Text Indexing Tool

(UC02 -Removing a Parser)

User

MainControl

removeParser(fileType)

DynamicLoader

removeParser(fileType)

The main control removes

the parser from the collection

and the Dynamic Loader

removes the dll.

UC03 – Extract Text From a File

[image: image9.emf]TCN Text Indexing Tool

(UC03 -Extract Text From a File)

User

MainControl

addParser(filename)

ParserETC

canParse:=canParse(filename)

Repeat for each known

parser until one of them

returns true.

canParse

parse:=parse(filename)

ExtractedText

ExtractedText()

append(text)

extractedText

ToString:=ToString()

extractedTextString

extractedTextString

Repeat until full text from

the document has been

extracted and appended.

Logging Sequence Diagram

[image: image10.emf]MainControl Logger Exception User

Extract Text

Log File

Log exception

Get error message

exception trace

Report error

Do something that invokes exception

Exception Thrown

Open file

file handle

Append error exception

Close file

TCN Indexing Tool

(Logging)

_1200230215.vsd
System

Sequence

TCN Text Indexing Tool
(UC01 - Adding a Parser)

User

Object1

MainControl

addParser(filename)

DynamicLoader

addParser(filename)

createParser(fielname)

Reads the dll given in
the filename and creates
the Parser class and
returns it.

parser

_1200231557.vsd
+MainControl(in maxFileSize : Integer, in timeout : Integer, in loggingEnabled : Boolean)
+extractText(in filename : String)
+addParser(in filename : String)
+removeParser(in fileType : String)

-maxFileSize : Integer
-timeout : Integer
-loggingEnabled : Boolean

MainControl

-logs

1

-loader

1

-parsers

1

-interface

1

_1200231597.vsd
System

Static Structure

+extractText(in filename : String, in maxFileSize : Integer, in timeout : Integer, in loggingEnabled : Boolean)
+addParser(in filename : String)
+removeParser(in fileType : String)

TextExtractionTool

+MainControl(in maxFileSize : Integer, in timeout : Integer, in loggingEnabled : Boolean)
+extractText(in filename : String)
+addParser(in filename : String)
+removeParser(in fileType : String)

-maxFileSize : Integer
-timeout : Integer
-loggingEnabled : Boolean

MainControl

+canParse(in filename : String) : Boolean
+parse(in filename : String) : ExtractedText

Parser

ParserETC

ParserPDF

ParserWord

+Log(in e : Exception<unspecified>)

-FILENAME : String

Logger

+ParsingException(in message : String)
+GetMessage() : String

ParsingException

-mainController

1

-logs

1

TCN Text Indexing Tool

View

Controller

Model

+addParser(in filename : String)
+removeParser(in fileType : String)
+initialize() : Parser
-createParsers()
+createParser(in fielname : String)

DynamicLoader

-loader

1

+append(in text : String)

+extractedText : String

ExtractedText

*

-parsers

_1200835409.vsd
Static Structure

User

MainControl

Logger

Exception

Extract Text

Log File

Exception Thrown

Do something that invokes exception

Log exception

Open file

file handle

Get error message

exception trace

Append error exception

Close file

Report error

TCN Indexing Tool
(Logging)

_1200230374.vsd
System

Sequence

TCN Text Indexing Tool
(UC03 - Extract Text From a File)

User

Object1

MainControl

addParser(filename)

ParserETC

canParse:=canParse(filename)

Repeat for each known
parser until one of them
returns true.

canParse

parse:=parse(filename)

ExtractedText

ExtractedText()

append(text)

extractedText

ToString:=ToString()

extractedTextString

extractedTextString

Repeat until full text from
the document has been
extracted and appended.

_1200230866.vsd
System

System

Component

Model

View

Controller

TCN Text Indexing Tool

TCN Knowledge TracTM
(External System)

Main Control

Logger

Parser

Dynamic Loading

Interface

_1200230291.vsd
System

Sequence

TCN Text Indexing Tool
(UC02 - Removing a Parser)

User

Object1

MainControl

removeParser(fileType)

DynamicLoader

removeParser(fileType)

The main control removes
the parser from the collection
and the Dynamic Loader
removes the dll.

_1200229352.vsd
+Log(in e : Exception<unspecified>)

-FILENAME : String

Logger

_1200230004.vsd
System

Sequence

Sequence

User

Object1

MainControl

MainControl(maxFileSize, timeout, loggingEnabled)

DynamicLoader

initialize:=initialize()

createParsers()

For each parsing dll
found in the parsing
folder it creates the
parsing class to be
used by the main
control

parsers

TCN Text Indexing Tool (Common Startup)

_1199177313.vsd
+ToString() : String
+canParse(in filename : String) : Boolean
+parse(in filename : String) : ExtractedText

Parser

+ParserWord()

ParserWord

+ParserPDF()

ParserPDF

+ParserETC()

ParserETC

