::
TCN Text Extraction Tool

Requirements Specification

Prepared by:

Adam Kreiss

James Gehring-Anders

Theodore Wilson

Team Spider

::

[image: image6.png]

[image: image7.jpg]Software Engineering

February 19, 2006
Revision 1.2
Table of Contents

1Table of Contents

2Revision History

3Overview

3Objectives

3Business Process

3User Roles and Responsibilities

3Product Rollout Considerations

4Scope

4Definitions, Acronyms, and Abbreviations

5Functional Requirements

5Statement of Functionality

6Use Cases

6UC01: Adding a Parser

7UC02: Removing a Parser

8UC03: Extract Text From a File

9UC04: Determine File Type

10UC05: Parse File

11Use Case Diagram

12Sequence Diagrams

Revision History
	Name
	Date
	Reason For Changes
	Version

	Adam Kreiss
	12/28/2005
	Initial version
	0.5

	Theodore Wilson
	1/11/2006
	Formatting and Review
	1.0

	Adam Kreiss
	1/14/2006
	Updated for Prof. Reddi’s suggestions
	1.1

	Team Spider
	1/17/2006
	Added sequence diagrams
	1.2

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

Overview
Objectives

The Telecommunication Consultation Network (TCN) has been developing tools under the KnowledgeTrac(name to further its goals of document management and relational connections of client data to contact information. One component of the KnowledgeTrac(system is known as the KnowledgeTrac(Spider. The KnowledgeTrac(Spider indexes web documents. In the future TCN would like to have the KnowledgeTrac(Spider tool also index common business documents that are linked to on a web page. To further this end, TCN has approached the Software Engineering department at the Rochester Institute of Technology about enrolling a senior project team to develop a tool (the Text Extraction Tool) that can receive a file, determine its type, and extract text from the file.

Business Process

Currently TCN uses KnowledgeTracTM Spider to index web pages. The functionality provided by the Spider tool supports all web-based formats. It does not support other popular file formats, such as PDF and Microsoft document formats. When the KnowledgeTracTM Spider tool detects a link to an unsupported document type it ignores it. The Text Extraction Tool is being built to address this problem.
The Text Extraction Tool, when complete, will be able to extract the text from a number of popular document formats. The KnowledgeTracTM Spider tool will use the Text Extraction Tool to get text from the file and index the text along with the gathered web-based text.
User Roles and Responsibilities

Parsing Module Developer
The Text Extraction Tool will support the addition of new parsing modules to support other document formats. The developer who creates these modules will be responsible for conforming to the interface exposed by the Text Extraction Tool. The developer will also need to conform to the non-functional contract points between the Text Extraction Tool and the module in development, such as exception handling, performance, and logging.
KnowledgeTracTM Spider Developer
The developer(s) responsible for maintaining the KnowledgeTracTM Spider tool will need to interface with the Text Extraction Tool to parse the supported file formats. They will need to understand and use the interface provided by the Text Extraction Tool.
Product Rollout Considerations

The Text Extraction Tool, through the KnowledgeTracTM Spider tool, will be run on a Windows 2000/2003 Server operating system. It will be treated as a Windows Control object by the KnowledgeTracTM Spider tool.

Scope

The Text Extraction Tool will be developed in a phased, repetitive cycle. Each parsing module will be completed individually. The first module, the PDF parsing module, is scheduled for completion on February 20, 2006. The schedule for module releases is detailed in the Project Plan document.
Definitions, Acronyms, and Abbreviations

KnowledgeTracTM
TCN’s proprietary search engine. It is similar to other search engines. It also provides the ability to tie content to a contact source.

KnowledgeTracTM Spider
The indexing tool used by the KnowledgeTracTM system to index web-sites and their included content.

Text Extraction Tool

The parsing tool being developed that will be used by the KnowledgeTracTM Spider tool to get text from various document formats.
Functional Requirements
Statement of Functionality

Interface
R1. The Text Extraction Tool will be a Windows Control object.

R2. The Text Extraction Tool control will require a parameter for the location of the file to be parsed. The tool will only support the parsing of files located on the machine running the Text Extraction Tool software. Remote access to files will not be supported.

R3. The Text Extraction Tool control will have an optional parameter that will limit the amount of time to be spent parsing a file. This parameter will be measured in seconds. If the time spent parsing the file exceeds the specified time, execution will halt and the Text Extraction Tool will return a file parsing timeout error code. The default state will be no time limit.

R4. The Text Extraction Tool control will have an optional parameter that will limit the size of the file to be parsed. This parameter will be measured in kilobytes. If the file is larger than the specified size, execution will halt and the Text Extraction Tool will return a maximum file size exceeded error code. The default state will be no size limit.

R5. The Text Extraction Tool control will have an option parameter to disable exception logging within the tool. The default state will be to have exception logging enabled.

R6. The output of the Text Extraction Tool after the successful completion of a file will include a string of all text within the file, the format of the file, and the version of the file format used.

R7. The output of the Text Extraction Tool after unsuccessful completion of a file will include an error code that specifies the error type, the exception that caused the failure, and the procedure that triggered the exception. The following error types will exist: Unknown file format, corrupt/malformed file, failure to parse file (internal failure), file parsing timeout, maximum file size exceeded, and locked or inaccessible file.

R8. No processing will be performed on the text to be returned before passing it back to the calling object.

Parsing
R9. The Text Extraction Tool will include a module to parse Adobe PDF files. The tool will support Version 4 (PDF Reference 1.5) and later versions.

R10. The Text Extraction Tool will include a module to parse Microsoft Word files. The tool will support Microsoft Word 97 and later versions.

R11. The Text Extraction Tool, as time allows, will support the following formats in prioritized order:
Microsoft Excel

Corel Word Perfect

Rich Text

Microsoft PowerPoint

Microsoft Publisher

Microsoft Word for Macintosh

Microsoft Works

Microsoft Works Worksheets

R12. The Text Extraction Tool will be able to log any exceptions to an error file.
Maintenance
R13. TCN is not enforcing any specific coding standards on Team Spider. Implementations should be well commented. All contributors must be credited.

R14. Parsing modules should be able to be added or removed. Adding a complete module to the Text Extraction Tool should take no longer than 15 minutes. This should not involve any code changes.
Use Cases
These use cases document the flow of user interactions with the TCN Text Indexing Tool interfaces.

UC01: Adding a Parser

	Use Case ID:
	UC01

	Use Case Name:
	Adding a Parser

	Created By:
	James Gehring-Anders
	Last Updated By:
	Adam Kreiss

	Date Created:
	12/28/05
	Date Last Updated:
	1/14/2006

	Actors:
	Developer, Text Extraction Tool Source

	Description:
	A developer wants to add a new (or replace an old) parser.

	Trigger:
	A parser is to be added to the system.

	Preconditions:
	1. The developer knows the steps to update the Text Extraction Tool.

2. The developer has access to the latest version of the source for the Text Extraction Tool.

	Postconditions:
	1. The new parser is added to the Text Extraction Tool.

	Normal Flow:
	1. The developer identifies the interface they must satisfy for their parser to interact with the Core (non-parsing) modules.

2. The developer implements their parser to meet the interface identified above.

3. The developer saves the module as a DLL file.

4. The developer puts the DLL file in the module folder of the Text Extraction Tool.

5. The Text Extraction Tool dynamically recognizes the new module and adds it to the list of parsers.

6. The developer runs tests on the new parser.
7. The Text Extraction Tool completes the tests successfully.

	Alternative Flows:
	1. Test cases fail
6.1. The Text Extraction Tool fails a test case.
6.2. The developer fixes the defect.
6.3. Continue with Step 3.

	Exceptions:
	None

	Includes:
	None

	Priority:
	High

	Frequency of Use:
	Medium

	Business Rules:
	None

	Special Requirements:
	The Text Extraction Tool should not have to be restarted to pick up on the new module.

	Assumptions:
	None

	Notes and Issues:
	None

UC02: Removing a Parser

	Use Case ID:
	UC02

	Use Case Name:
	Removing a Parser

	Created By:
	Adam Kreiss
	Last Updated By:
	Adam Kreiss

	Date Created:
	1/14/2006
	Date Last Updated:
	1/14/2006

	Actors:
	Developer, Text Extraction Tool Source

	Description:
	A developer wants to remove an existing parser from the system.

	Trigger:
	A parser is to be removed from the system.

	Preconditions:
	1. The parser is currently loaded into the Text Extraction Tool.

2. The developer has access to the module folder within the Text Extraction Tool.

	Postconditions:
	1. The parser is no longer available to the Text Extraction Tool.

	Normal Flow:
	1. The developer locates the DLL file for the parser to be removed.
2. The developer removes the DLL file from the module directory.

3. The Text Extraction Tool detects the removal of the DLL module and removes the parser from the list of available file parsers.

	Alternative Flows:
	None

	Exceptions:
	None

	Includes:
	None

	Priority:
	Medium

	Frequency of Use:
	Low

	Business Rules:
	None

	Special Requirements:
	The Text Extraction Tool should not have to be restarted to remove a parser.

	Assumptions:
	None

	Notes and Issues:
	None

UC03: Extract Text From a File

	Use Case ID:
	UC03

	Use Case Name:
	Extract text from a file

	Created By:
	Adam Kreiss
	Last Updated By:
	Adam Kreiss

	Date Created:
	12/26/05
	Date Last Updated:
	1/14/2006

	Actors:
	TCN Indexing Tool user

	Description:
	The user will pass a file location to the TCN Indexing Tool. The Indexing Tool will search the file to determine the file type and extract all user-visible text from the file. The text will then be returned back to the user in the form of a string.

	Trigger:
	User Interaction

	Preconditions:
	1. A file exists at the location provided.

	Postconditions:
	1. The provided string will contain all the user-visible text from the file provided.

	Normal Flow:
	1. The user provides a file location to the TCN Indexing Tool.

2. The TCN Indexing Tool will attempt to determine the file type. (Sub-Flow UC03)

3. The file is parsed and the text is extracted. (Sub-Flow UC05)
4. The user-visible text will be returned to the user in a string.

	Alternative Flows:
	1. Unknown file extension
2.1 The Text Extraction Tool will return an unknown file extension error code if the file is not recognized as a supported file type.

2. Cannot view file
2.1 The file permissions do not allow the Text Extraction Tool to read it.

2.2 The Text Extraction Tool will return a locked or inaccessible file error code.

	Exceptions:
	None

	Includes:
	UC04 – Determine File Type

UC05 – Parse File

	Priority:
	High

	Frequency of Use:
	100%

	Business Rules:
	None

	Special Requirements:
	None

	Assumptions:
	None

	Notes and Issues:
	None

UC04: Determine File Type

	Use Case ID:
	UC04

	Use Case Name:
	Determine file type

	Created By:
	Adam Kreiss
	Last Updated By:
	Adam Kreiss

	Date Created:
	12/27/05
	Date Last Updated:
	1/14/2006

	Actors:
	TCN Indexing Tool, the file to be parsed

	Description:
	Prior to extracting text from a file, the tool first must determine the file type. This may be determined through the file header, filename extension or other means.

	Trigger:
	A file needs to be parsed by the Indexing Tool

	Preconditions:
	1. A file location has been provided to the Indexing Tool.

2. A file exists at the location given to the Indexing Tool.

3. The file is readable by the Indexing Tool. (Security permissions)

	Postconditions:
	1. The file type is known.

	Normal Flow:
	2. The Indexing Tool reads the filename extension.

3. The Indexing Tool uses the extension to classify the file type by comparing it against known extensions.

4. The Indexing Tool determines the file headers associated with this file extension.

5. The Indexing Tool opens the file.

6. The Indexing Tool reads the header of the file and checks it against the expected header.

7. The Indexing Tool uses the file type for future interactions with the file.

	Alternative Flows:
	1. Unknown file extension
2.1 The Indexing Tool opens the file.

2.2 The Indexing Tool reads the file header.

2.3 The Indexing Tool compares it against all known file headers.

2.4 The Indexing Tool uses the file type that matches the header.

2. Different extension and file header

5.1 The Indexing Tool uses the file type matching the file header.
5.2 Continue with Step 6.
3. Cannot determine file type (Extension and header are unknown)
6.1 The Indexing Tool registers a failure to determine the file type with an error code.

	Exceptions:
	E1. No file or unreadable file

4.1 The Indexing Tool registers a failure to open the file with an error code.

	Includes:
	None

	Priority:
	High

	Frequency of Use:
	Once for every file indexed

	Business Rules:
	1. The file will be located locally on the machine running the Indexing Tool.

	Special Requirements:
	None

	Assumptions:
	None

	Notes and Issues:
	Files that do not have a header to check against must have correct extensions.

UC05: Parse File
	Use Case ID:
	UC05

	Use Case Name:
	Parse a file

	Created By:
	Adam Kreiss
	Last Updated By:
	Adam Kreiss

	Date Created:
	1/14/2006
	Date Last Updated:
	1/14/2006

	Actors:
	TCN Indexing Tool user

	Description:
	The Text Extraction Tool will parse text from a file. The text retrieved will only be user-visible text. This will not include meta-information about the file.

	Trigger:
	UC03 Extract Text from File

	Preconditions:
	1. The parser to be used to extract text has already been loaded.

	Postconditions:
	1. All user-visible text in the file has been copied to the return object.

	Normal Flow:
	1. The parser finds the beginning of text in the file.
2. The parser extracts a segment of the file. This can be a line of text or some other unit of text depending on how the file format breaks apart segments within the file.

3. The extracted text is added to the return object.
4. Repeat at Step 2 until the end of text in the file is reached.

	Alternative Flows:
	1. Malformed file
3.1. The parser encounters a portion of the file that does not conform to the file format specification.
3.2. The parser returns a malformed file error.
2. Failed parsing

3.1. The parser encounters an internal error.
3.2. The parser returns an internal parser error code.

	Exceptions:
	None

	Includes:
	None

	Priority:
	High

	Frequency of Use:
	100%

	Business Rules:
	None

	Special Requirements:
	None

	Assumptions:
	None

	Notes and Issues:
	None

Use Case Diagram

[image: image1.emf]TCN Text Indexing Tool

User

Adding a Parser

Removing a Parser

Extract Text from

a File

Parse File

Determine File Type

«uses»

«uses»

+UC01

+UC02

+UC03

Sequence Diagrams

[image: image2.emf]TCN Text Indexing Tool (Common Startup)

User

MainControl

MainControl(maxFileSize, timeout, loggingEnabled)

DynamicLoader

initialize:=initialize()

createParsers()

For each parsing dll

found in the parsing

folder it creates the

parsing class to be

used by the main

control

A Collection of Parsers

Returns Control to the User

[image: image3.emf]TCN Text Indexing Tool

(UC01 -Adding a Parser)

User (UC01)

MainControl (UC01)

addParser(filename)

DynamicLoader (UC01)

addParser(filename)

createParser(fielname)

Reads the dll given in

the filename and creates

the Parser class and

returns it.

Returns the New Parser

Returns Control to the User

 EMBED Visio.Drawing.11 [image: image4.emf]TCN Text Indexing Tool

(UC02 -Removing a Parser)

User (UC02)

MainControl (UC02)

removeParser(fileType)

DynamicLoader (UC02)

removeParser(fileType)

The main control removes

the parser from the collection

and the Dynamic Loader

removes the dll.

Control back to the Main Control

Returns Control to the User

[image: image5.emf]TCN Text Indexing Tool

(UC03 -Extract Text From a File)

User (UC03)

MainControl (UC03)

addParser(filename)

ParserETC

canParse:=canParse(filename)

Repeat for each known

parser until one of them

returns true.

True, if it can be parsed using this Parser

canParse:=canParse(filename)

Extracted Text (UC03)

ExtractedText()

ExtractedText data object created

append(text)

Text has been appended

Returns the ExtractedText object

append(text)

Returns the extracted text as a string

Returns the string to the User.

Repeat until full text from

the document has been

extracted and appended.

_1199020854.vsd
System

Sequence

Sequence

User

Object1

MainControl

MainControl(maxFileSize, timeout, loggingEnabled)

DynamicLoader

initialize:=initialize()

createParsers()

For each parsing dll
found in the parsing
folder it creates the
parsing class to be
used by the main
control

A Collection of Parsers

Returns Control to the User

TCN Text Indexing Tool (Common Startup)

_1199021063.vsd
System

Use Case

User

Adding a Parser

Removing a Parser

Extract Text from
a File

Parse File

Determine File Type

TCN Text Indexing Tool

«uses»

«uses»

+UC01

+UC02

+UC03

_1199020679.vsd
System

Sequence

TCN Text Indexing Tool
(UC02 - Removing a Parser)

User (UC02)

Object1

MainControl (UC02)

removeParser(fileType)

DynamicLoader (UC02)

removeParser(fileType)

The main control removes
the parser from the collection
and the Dynamic Loader
removes the dll.

Control back to the Main Control

Returns Control to the User

_1199020793.vsd
System

Sequence

TCN Text Indexing Tool
(UC03 - Extract Text From a File)

User (UC03)

Object1

MainControl (UC03)

addParser(filename)

ParserETC

canParse:=canParse(filename)

Repeat for each known
parser until one of them
returns true.

True, if it can be parsed using this Parser

canParse:=canParse(filename)

Extracted Text (UC03)

ExtractedText()

ExtractedText data object created

append(text)

Text has been appended

Returns the ExtractedText object

append(text)

Returns the extracted text as a string

Returns the string to the User.

Repeat until full text from
the document has been
extracted and appended.

_1199020539.vsd
System

Sequence

TCN Text Indexing Tool
(UC01 - Adding a Parser)

User (UC01)

Object1

MainControl (UC01)

addParser(filename)

DynamicLoader (UC01)

addParser(filename)

createParser(fielname)

Reads the dll given in
the filename and creates
the Parser class and
returns it.

Returns the New Parser

Returns Control to the User

