::

TCN Text Extraction Tool

Technical Report

Prepared by:

Adam Kreiss

James Gehring-Anders

Theodore Wilson

Team Spider

::

[image: image3.emf]0

5

10

15

20

25

30

35

40

45

Planned vs Actual Time

Planned # Days

Actual # Days

Days

[image: image4.emf]-5

0

5

10

15

20

25

30

Slippage

Days

5/5/2006

Revision 1.1
Revision History

	Name
	Date
	Reason For Changes
	Version

	Adam Kreiss
	4/14/2006
	Initial version
	0.5

	Adam Kreiss
	5/5/2006
	Revisions from Prof. Reddy’s comments
	1.0

	James Gehring-Anders
	5/12/2006
	Added Metrics
	1.1

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

Summary

This paper describes the TCN Text Extraction Tool Software Engineering Senior Project. The paper provides background information on the problem faced by TCN, a description the software engineering process followed to address the problem and a description of the artifacts and results produced. The paper also provides some reflections on the experience gained.

This paper is intended for software engineering professionals. The vocabulary and concepts used within require a familiarity with the software engineering field.

Table of Contents

Revision History
2

Summary
3

Table of Contents
4

Introduction
5

Background Information
5

Goals
5

Project Development
6

Requirements
6

Means of Elicitation
6

Areas of Focus
6

Constraints
7

Product Design & Development
8

Architecture
8

Design
10

Process
10

Software Development Process
10

Schedule
11

Conflicts
12

Metrics
13

Results
14

Project Status
14

Deliverables
14

Project Documentation
14

Implementation
14

Support Documentation
14

Reflection & Conclusion
15

Appendix A: Project Schedule
16

Appendix B: Risk Identification/Mitigation Table
19

Introduction

Background Information

Telecom Consulting Group N.E. Inc. (TCN) is a Rochester based company looking for student assistance with their KnowledgeTrac Spider™ software. KnowledgeTrac Spider™ is part of a larger, patent-pending software solution that provides functionality for discovering, parsing, indexing, and creating relational links between data available on the internet. The software system then links the data to points of contact. This allows TCN to link websites with specific businesses or individuals. Prior to the Text Extraction Tool (TET) project, their solution focused mainly on web-based file indexing (HTML). Planning for the future, TCN wanted to add support for office document formats such as Adobe PDF and Microsoft Word.

Goals

Team Spider, consisting of Adam Kreiss, Ted Wilson and James Gehring-Anders, has been assigned to the task of creating a plug-in for parsing these extra formats. The tool created needed to provide a means to a) determine a file's type/format, b) strip out any meaningful text, and c) return this via string to the calling process. To be of any significant value, the behavior needs to exist across a wide array of document types such as PDF, Word documents (across many versions), Excel documents and many others. TCN prioritized the various file formats to ensure that we completed the more important parsers first.

Project Development

Requirements

Means of Elicitation

There were two main methods of requirements elicitation for the TET Senior Project. We did not feel the need to use a number of different elicitation techniques because our sponsor knew their requirements well and the scope of differing functionality with the TET was small. This simplified the requirements gathering process greatly.

Initial requirements for the TET project were gathered by reviewing the project proposal provided by the Software Engineering department. This document gave a good initial idea of the system goals.

The goals outlined by the project proposal were used to develop more detailed requirements during the second iteration of requirements gathering.

Once the first phase of requirements gathering was completed, an interview with the two points of contact at TCN, Dan Erb (developer) and Jim Cavagnaro (manager) was conducted. They were presented with basic ideas about the project. The meeting proceeded to flesh out the details as by asking detailed questions about the system. Over the course of 2-3 interviews with increasing detail, we gathered a majority of our requirements. These were then documented in an SRS and approved by TCN..

Areas of Focus

Our requirement elicitation efforts were specific to three main areas.

The first area was the interface TCN would use to interact with the TET. This was of interest because of the need to insure that TCN could interface with the TET. It also aided in determining non-core requriements. For example, it was determined that there was a requirement limiting the time a parser could attempt to parse a file. This had not been elicited during initial meetings and reviews of the project synopsis.

The second area of focus was the parsing functionality. This included questions around which file types needed support, what was expected to be extracted, and processing that had to be performed on the extracted text before returning it to the KnowledgeTrac Spider™ tool.

The third area of focus was non-functional requirements. It was clear from the start of this project that the level of modifiability and maintainability required would be high. Every time a new file format, or version of a file format, was made public, the TET would need to have a parser added to support it. These two quality attributes became the critical architectural influence on the design of the TET system.

Constraints

There were few constraints on the TET project. The two most important constraints were around the technology used to develop and run the TET.

Development was required to use VisualBasic.NET within the Visual Studio .NET IDE. This caused difficulty because Adam Kreiss and James Gehring-Anders had little development experience with the .NET framework. Because this risk was realized during project planning it was mitigated effectively by gaining familiarity with the language and IDE in the early phases of the project before implementation started.

The second constraint was that the TET was to operate in a Windows environment. Specifically, TCN stated the TET had to be able to execute under either Windows 2000 or Windows 2003 Server edition. Since VB.NET requires a Windows environment and neither Windows 2000 or Windows 2003 were unfamiliar technology to Team Spider, this was not a significant risk.

The only non-technology constraint was that commercial third party tools were to be avoided. This impacted the project because many of the parsing tools available were produced as commercial products. This constraint did not prevent us from completing any parsers.

Product Design & Development

Architecture

The TET was designed with three main components in a Model-View-Controller style architecture: a user interface component (View), the parsing modules (Model), and the controller, acting as the point of contact between the parsing modules and the outside world (Controller). See Figure 1 for a diagram of the architecture.

[image: image1.emf]TCN Text Indexing Tool

Model

Controller

View

TCN Knowledge Trac

TM

(External System)

Main Control

Logger

Parser Dynamic Loading

Interface

Figure 1: Architecture Diagram

Two interfaces were developed to the controller. The first is a graphical interface to be used for integration, system, and acceptance testing. The second is the interface to be used by the KnowledgeTrac™ Spider tool. Regardless of the interface used, all requests are to be passed from the interface to the controller. This isolates the parsing module from interface changes while shielding the user from low-level exceptions thrown by a parser. The controller coordinates requests between the user interface and the parsing modules and handles abstracted functionality such as detecting time-outs and removing non-ASCII text from the result string. The parsing modules contain the functionality to handle the two tasks critical to parsing: file identification and extracting text.

A fourth pre-existing component to the system was the KnowledgeTrac™ Spider tool. Team Spider did not perform any implementation or design work on this component. It was taken into consideration when defining the interface between it and the TET.

There were several strategies introduced to improve the TET’s modifiability:

· Maintain the file identification algorithms separate from parsing algorithms. This was an abstraction of common services.Reduce the components that will need to be implemented to parse a new file format to only the parser itself..

· Calls to a parser go through a simplified interface; most methods pertaining to parsing are kept private to improve encapsulation of the parsers as well as reduce interface requirements.

· A configuration file is used to enable dynamic loading of parsers into the TET. This allows the tool to determine which parsers are available every time a file is parsed.

Design

The largest and most important component of the design of the TET was the parser interface (See Figure 2). The rest of the design is self-evident.

[image: image2.emf]+ToString() : String

+canParse(in filename : String) : Boolean

+parse(in filename : String) : ExtractedText

Parser

+ParserWord()

ParserWord

+ParserPDF()

ParserPDF

+ParserETC()

ParserETC

Figure 2: Parsing Module Design

The Parser components implement a Strategy pattern. The Strategy pattern defines a family of algorithms that are encapsulated and interchangeable. The Strategy pattern lets the algorithm for the global parser vary independently depending on which type of file is being parsed. This variability in functionality plus the dynamic install/uninstall functionality for parsers provided by the Dynamic Loader created a highly modifiable system. As mentioned above, modifiability was the critical architectural influence.
Process

Software Development Process

The TET project followed a combination of a waterfall and an iterative process.

The waterfall process was used for the first half of the project. The goals for the first half of the project were: to gather and analyze all of the requirements, design the entire system, develop a generic test plan up front, and implement the non-parser components of the system.. The project plan called for complete versions of every artifact up front with as little backtracking as possible.

The iterative process was used to develop the parsers during the second half of the project. Each parser was developed during its own iteration of the development cycle, which included design, implementation, unit and integration testing phases.

Schedule

A rough estimate of the schedule was developed based on the process defined above. A number of milestones were planned. More detailed schedules for a particular phase were added as the phase approached. The detailed schedule along with the actual dates of completion are shown in Appendix A.

The milestones for the waterfall portion of the project were the completion of the Project Plan, the completion of the Software Requirements Specification (SRS), the completion of the Design Document and the completion of the non-parser components of the system. The graph below (Figure 3) shows the accuracy of the schedule. There was significant slippage during the design phase, but the final milestone of the first half of the project was reached on time due to increased effort by the team towards the end of the quarter.
<< Graph here>>

Figure 3: Waterfall Phase Schedule Estimate vs. Reality

A milestone was set for approximately every two weeks for the second, iterative half of the project (refer to Figure 4). Each milestone coincided with the completion of a particular parser. This schedule slipped almost immediately due to difficulties that were encountered in developing parsers for file formats developed by Microsoft. These difficulties are detailed further in the Conflicts section of the document. Once the issue was resolved a large effort was made to catch back up to the schedule. The Word, Excel and PowerPoint format parsers were developed and slippage was eliminated.
<< Graph Here >>

Figure 4: Iterative Phase Schedule Estimate vs. Reality

Conflicts

Risk identification and mitigation was part of the project plan developed during the first half of the project. The strategies developed there were employed as needed and were successful. See Appendix B for a full listing of the risk identification table.

Microsoft Office Automation

The largest issue encountered involved the parsers for Microsoft Office files. Microsoft does not publish the specifications for their file formats which made developing in-house parsers an ineffective strategy. Microsoft also discourages people from building their own parsers and instead provides their own way to access the files. This made finding a 3rd party parser or API very difficult.

The mitigation strategy called for an assessment of the value of the parser. This assessment was the deciding factor between devoting extra time to that format or moving on to others. Since this problem affected three out of the four most desired parsers, it was decided to invest as much time as necessary to find a way around the problem.

The solution used was to take advantage of Microsoft’s suggested method of accessing these files, known as Office Automation. Office Automation is a set of libraries Microsoft provides to interact with an Office application while it’s running. The primary disadvantage to this is that Office Automation requires that Microsoft Office be installed on the machine.. Advantages included support for any file the application can open (for Word alone, this includes Word files, WordPerfect files, MS Works files, RichTextFormat files and many more) and increased forward compatibility of the TET. A developer would only need to install the latest version of Office and change references within the parser to support a new version of an Office file format.

Metrics

Several metrics identified in the project plan were tracked over the course of the project. The goal was to produce metrics both to show progress over time and to display the quality of our final product.

The first was accomplished by gathering productivity and effort data, such as the lines of code produced and the accuracy of the effort estimations in terms of amount of time and completion date. (See Figures 3 and 4). The project plan was not adjusted using the information we gained from tracking the accuracy of our estimations. This was because with just this twenty week development period, and little prior experience tracking estimates, adjustments based on the metrics would have been as blind as the initial planning efforts. However, it did provide some expectation of slippage, and the experience of tracking it.

[image: image5.png]

Figure 3: Slippage of Actual Completion Dates from Planned Completion Dates

[image: image6.jpg]Software Engineering

Figure 4: Estimated Days of Effort vs Actual Days of Effort
Defect oriented metrics were collected to show the quality of the system artifacts produced. This included the defect density for each component of the system and the percentage of defects repaired (See Figure 5).

<To be inserted after Acceptance Testing is completed>
Results

Project Status

<< We need to get closer to completion before this section is terribly useful>>

Deliverables

There are a series of artifacts that will be delivering to TCN upon completion of the project. They can be broken into three areas:

Project Documentation

The project documentation consists of all the software engineering documentation produced, such as the Project Plan, SRS, Design Document, Testing documents, and metrics data produced over the course of the project. The hope is that should TCN need to make changes to the TET in the future, these documents will help remind them of the rational behind how and why various design choices were made.
Implementation

 All of the code produced during the implementation of the TET will be handed over to TCN in the form of a Microsoft Visual Studio project. This will include the NUnit test cases used to automate the testing of the system.

Support Documentation

Three support documents around the use of the TET will also be included. The first is the API for the implementation to be used as a reference when interfacing with it. The second two documents are instructional guides for a) creating and adding a parser to the TET and b) interfacing with the TET from an external tool. These will help future users of the tool by reducing the overall learning curve of the application.

Reflection & Conclusion

Reflections
The most significant challenge during this project was maintaining control of its scope. Specifically, there was the question of the approach to use to parse files. File parsing requires understanding, or having access to a tool that understands, the file’s format. Several of our parsers work with files that are closed, meaning their specifications are not publicly released. Further, simply reviewing these formats does not make their structure clear. In order to parse TCN’s most important file formats, Team Spider balanced this by using external tools, such as xpdf and Office Automation. While this was the optimal solution of developing a parser native to VisualBasic.NET for each format, it provided TCN with the desired functionality in the timeframe allotted. This concern is also mitigated by the TET’s design, which allows the easy plugging of new parsers into the tool.

Another significant challenge was ensuring that basic principles of software engineering were upheld. The client lacks experience with some concepts of engineering software, and required Team Spider to stress their importance to the success of the project.

Communication was an unexpected issue with the project. There were several times that dialog both internal and external Team Spider allowed issues to develop. This was mitigated by improved practices, such as calling for more frequent meetings with the client, writing a record of what happened at meetings (with or without the client), and always getting back together to discuss the project.

Appendix A: Project Schedule

	Task
	Artifacts Produced
	Description
	Date Due
	Completed On

	Project Synopsis
	Project Synopsis document
	This document will describe the project at a very high level.
	12/2/2005
	12/1/2005

	Project Plan draft
	Project Plan initial draft
	A first pass at the project plan. Once this has been presented to TCN, it can be updated for approval as the final version.
	12/12/2005
	12/12/2005

	Project Plan
	Final version of project plan required for initial approval.
	The approved version of the Project Plan will outline the initial schedule and estimates as well as describe the processes around development. This is a working document that will change as the project progresses. This version just indicates approval by TCN.
	12/16/2005
	12/16/2005

	Planning Complete
	Project Plan document
	This marks the completion of the initial planning phase for the project.
	12/16/2005
	12/16/2005

	Requirements gathered
	List of requirements/Initial requirements document.
	The initial phase of requirements gathering has been completed. The artifacts produced can be used to generate the use cases and final version of the requirements document.
	12/21/2005
	12/16/2005

	Use cases completed
	List of use cases centered around requirements
	These use cases will be approved by TCN in the final requirements document and then used for testing validation.
	12/28/2005
	12/28/2005

	Initial Requirements Document
	Initial requirements document, including use cases
	This document will need to be presented to TCN and any modifications made before the final version can be approved.
	12/30/2005
	1/14/2006

	Approved version of Requirements Document
	Approved version of the requirements document
	This document will be used as a testing/development reference for the TCN Extraction Tool project.
	1/06/2006
	1/18/2006

	Requirements Complete
	SRS document
	This marks the completion of requirements gathering for the project.
	1/06/2006
	1/18/2006

	Initial version of core components Design Document
	Draft of core components design
	The core components of the Text Extraction Tool are the non-document specific components of the tool. These components can be built early on and reused for the rest of the project. The design specifications for the core components will outline how they will be built. This will not include designs for the individual parsing modules. It will also include the test plan for the core components itself.
	1/12/2006
	2/7/2006

	Test Plan for core components
	Test plan for the core components
	The test plan documentation will be used to create the test cases for the core components once built.
	1/16/2006
	2/7/2006

	Approved version of core components Design Document
	Approved version of the core components design documentation. Core components test plan
	The design and test plan of the core components will provide details needed to build the foundation of the Text Extraction Tool
	1/16/2006
	2/9/2006

	Design Complete
	Requirements Document, Design Document and associated diagrams, Test Plan document.
	This milestone marks the completion of the design of the core components around which the parsing modules will be built. It also marks the completion of high-level design of how the parsers should be built. The parsers themselves will be designed in detail on an individual basis.
	1/16/2006
	2/9/2006

	PDF Module Complete
	PDF Module design document and associated diagrams, Extraction Tool framework code, PDF parser code
	This milestone marks the completion of the core components code for the Extraction Tool and the completion of the first parsing module. This includes full testing of both components.
	2/20/2006
	2/19/2006

	Richtext Module Complete*
	Richtext Module design document and associated diagrams, Richtext parser code
	This milestone marks the completion of the Richtext parsing module. This includes full unit and integration testing of the module.
	3/06/2006
	4/5/2006

	Word Document Module Complete
	Word Document Module design document and associated diagrams, Doc parser code
	This milestone marks the completion of the Word document parsing module. This includes full unit and integration testing of the module.
	3/20/2006
	4/12/2006

	Excel Document Module Complete*
	Excel Document Module design document and associated diagrams, Excel parser code
	This milestone marks the completion of the Excel document parsing module. This includes full unit and integration testing of the module
	4/3/2006
	4/12/2006

	PowerPoint Module Complete*
	PowerPoint Module design document and associated diagrams, PowerPoint parser code
	This milestone marks the completion of the PowerPoint parsing module. This includes full unit and integration testing of the module.
	4/17/2006
	4/12/2006

	Publisher Module Complete*
	Publisher Module design document and associated diagrams, Publisher parser code
	This milestone marks the completion of the Publisher parsing module. This includes full unit and integration testing of the module.
	
	

	Word Perfect Module Complete*
	Word Perfect Module design document and associated diagrams, Word Perfect parser code
	This milestone marks the completion of the Word Perfect parsing module. This includes full unit and integration testing of the module.
	
	

	Word for Mac Module Complete*
	Word for Mac Module design document and associated diagrams, Word for Mac parser code
	This milestone marks the completion of the Word for Mac parsing module. This includes full unit and integration testing of the module.
	
	

	Works Module Complete*
	Works Module design document and associated diagrams, Works parser code
	This milestone marks the completion of the Works parsing module. This includes full unit and integration testing of the module.
	
	

	Works Worksheet Module Complete*
	Works Worksheet Module design document and associated diagrams, Works Worksheet parser code
	This milestone marks the completion of the Works Worksheet parsing module. This includes full unit and integration testing of the module.
	
	

Appendix B: Risk Identification/Mitigation Table

	Risk
	Mitigation
	Cost (1-10)
	Probability
	Risk Exposure

	Large destructive requirement change / Significant and unplanned change of scope
	Early modules will gather feedback to minimize effect of such a change. Clearly express the cost of such a change before implementing.
	7 - Medium; cost increases as time passes
	.20
	1.40

	Difficult file format – A particular file format proves difficult to extract text from.
	Identify format as problem and evaluate the costs of investing more time .or moving forward with other formats.
	7 - High if format cannot be skipped, otherwise Medium
	.10
	.70

	Little experience with VB.NET – No one on the team has worked as extensively with VB.NET as they have other languages.
	Rely on past teachings of concepts while picking up syntax from personal instruction or readings.
	6 - High if misunderstandings lead to poor design. Low otherwise.
	.05
	.30

	Team attrition – The core team consists of three members and cannot afford to lose one
	Stay aware of other teammates and provide the assistance necessary to keep them on the team.
	10 - Extreme; emergency action required
	.01
	.10

	No formal requirements – The client does not provide formal requirements.
	Work closely with TCN to gather requirements. Require sign-off on the requirements before moving on to design and implementation. Release a prototype early to gather feedback.
	4 - Medium if this allows large scope changes further on
	.30
	1.20

	Final product integration failure
	Perform integration testing upon completion of every parsing module.
	10 - High
	.05
	.50

	Significant failure in design
	Conduct reviews of the design. Create small tests for concepts if necessary.
	9 - High; cost increases as time passes
	.05
	.45

	Third party, licensed software cannot be avoided
	Exhaust all possible alternatives before hand.
	3 - Medium (Project is intended to operate without such software)
	.45
	1.35

	Lack of participation by members of Team Spider
	Have set due dates for deliverables. Peer intervention.
	2 - Medium – Slack needs to be picked up by others
	.10
	.20

	Infrastructure failures (loss of CVS repository, insufficient lab space, etc.)
	Use personal equipment/space, have redundant backups of CVS repository
	7 - High
	.05
	.35

� EMBED opendocument.ChartDocument.1 ���

� EMBED opendocument.ChartDocument.1 ���

_89499868.vsd
System

System

Component

Model

View

Controller

TCN Text Indexing Tool

TCN Knowledge TracTM
(External System)

Main Control

Logger

Parser

Dynamic Loading

Interface

_94794348.vsd
+ToString() : String
+canParse(in filename : String) : Boolean
+parse(in filename : String) : ExtractedText

Parser

+ParserWord()

ParserWord

+ParserPDF()

ParserPDF

+ParserETC()

ParserETC

_72796352.unknown

_89378936.unknown

