Intro to Classes in
C++

Classes

Programmer-defined types

Made up of members
o Variables
° Functions — called methods when part of a class
o Constructors: Initialize the class
o Destructors: Clean up as the class is being removed/ deleted

Concept is the same as C#, Java, etc.

Where C-structs have only variables, C++ classes are complete objects with
methods plus data

Still use .h files for ‘defining’; Use .cpp or .cc files for implementation

Syntax, semantics and
concepts

While ‘C’ syntax can be used, C++ class and object syntax can be quite different

Similarities: Differences:
- include (.h) files define the class structure only

- include files L .

]—c_icpp files implement the classes (sometimes .cc
- Basic if/ then/ else/ while control lles)
structures - new and delete (vs. malloc and free)

) - Abstract classes as ‘templates’
- Must still manage your own

memory (but now for objects as well public/ private/ protected variables and methods
as data) - constructors and destructors

) . - override and virtual methods
- Can actually write typical C code

(and not use C++ enhancements) - inheritance and polymorphism

- ‘streams’ for /0 (e.g. ‘cout’ vs. ‘printf’)
- namespaces for scope

- iterators

[And g++ compiler in Linux]

Class Declaration — Point.h

Generally declared in a header file h

L

o Separate declaration and definition
> Allows multiple files to #include declaration

Starts with class keyword
o Capitalized by convention

class Point

{

}; // Notice the semicolon!

Class Access Specifiers

By default, all class members are private

Change with access specifiers
o public [visible to everyone]
° private [visible only to the original class]
o protected [visible to the original class and derived classes]

Usage is different from C# / Java
> Define sections with specified access

Access Specifier Example

class Point

{
public:
// All public members here
// As many as you want
private:
// All private members here
// As many as you want
int x;
int y;
}s

Constructors

Code to be run when object is created
o |deally gives all variables useful values

o “Constructs” the object

Called automatically when object is created

Can have zero parameters
o Default constructor

Can require parameters

Constructor Declaration

class Point

{
public:
Point(); // Default Constructor
Point(int x, int y); // Constructor
private:
int x; // Member variable
int y; // Member variable
}s

Methods

Functions declared as class members
o “Member functions”

Methods have access to other class members
o Other methods

o Variables

Methods can use “this” keyword
> A pointer to this object

° More on pointers & objects soon

Method Example

class Point

{
public:
Point(); // Default Constructor
Point(int x, int y); // Constructor
int GetX(); // Method
int GetY(); // Method
private:
int x; // Member variable
int y; // Member variable
}s

Class Implementation —
Point.cpp

Generally defined in a .cpp file
o #include associated header file

Should define code of all members c
o Methods

o Constructors

o Destructors

No “class” keyword in .cpp file!
> Must use scope operator

Point.cpp - Example Part 1

#tinclude “Point.h"

// Constructors - Notice class name before ::
Point::Point()
{

X = 0;

y = 0;

Point::Point(int x, int y)

{
// More on the “->” soon
this->x = x;
this->y = vy;

}

Point.cpp - Example Part 2

// The rest of the file

// Methods - Again, class name before ::

int Point::GetX() { return x; }

int Point::GetY() { return y; }

Remember this? - Memory Organization

sp —

Function Call
Frames

Available
for
allocation

T

—

Global
Variables

Binary Code

he

Stack

The
Heap

m The call stack grows from the
top of memory down.

& Mi@pHeGe 1t the bottom of
The ﬁt@lﬁ Fvv holds local objects as

well as data

RYNaEN %%'Lc?é‘f’ef‘ﬁc?ﬂ SHd et

IS from

m What's left — the "heap" -
available for allocation.

When you declare a pointer

int *pint;
It is pointing to NOTHING
You need to create a valid ‘chunk’ of
memory, and assign the pointer to that
valid memory

RAI

Resource Acquisition Is Initialization

- Objects Own Resources
- Constructor is automatically called for initialization

- Where an object goes out-of-scope (e.g. end of a method), it’s
destructor is automatically called

> Also called when you delete an object

- The object is then responsible for releasing its own resources

This is C++’s way of a more memory safe object management
framework (without garbage collection)

Lifecycle

//create the object
MyClass *pObject = new MyClass(); constructor

//Do stuff with the object (call methods etc)

delete pObject; //destroy the object Object lifecycle

destructor

Instantiating Objects of a Class

Objects are instances of a class

Can be on the stack or the heap
° Just like arrays & other variables

Many syntax options for creating objects

For example ...

class widget
{
private:
int* data;
public:
widget(const int size) { data = new int[size]; } // acquire
~widget() { delete[] data; } // release
void do_something() {}

I

void functionUsingWidget() {
widget w(1000000);
//lifetime automatically tied to enclosing scope
//constructs w, including the w.data member
w.do_something();

} // automatic destruction and deallocation for w and w.data

Objects on the Stack

int main()

{
// Call constructors, but not saved in variables
Point(); // Default constructor
Point(5,5); // Parameterized
// Variables
Point pl; // Default
Point p2(); // NEITHER!
Point p3(5, 5); // Parameterized
Point p4 = Point(); // Default
Point p5 = Point(5, 5); // Parameterized
}

What’s Wrong With This?

What’s wrong with this line:

Point p2();
Looks like it should call default constructor

Technically a function declaration
o A function named p2, which returns a Point

° Yes, even though it’s in the main!

Objects on the Heap

// Remember: new returns a pointer!

int main()

{
// Call default constructor
Point* p6 = new Point;
Point* p7 = new Point();
// Call parameterized constructor
Point* p8 = new Point(5,5);

}

Destructors — time to clean up

// Called when the object Point::~Point()
is destroyed (stack or

delete)! {

class Point if (pObject)

t {

public: delete pObject;
Point(); // Default .

Constructor pObject = nullptr;
~Point(); // Destructor }

private:

¥

MyObject* pObject;

Calling Methods — Local
Variables

Can call methods once you have an object

Local variable method syntax is simple:

// Create a point
Point p = Point(5, 5);

// Get the x value
int x = p.GetX();

Calling Methods - Pointers

Not as straight-forward

Can’t call a method on a memory address

Must dereference first, then call method
o Or use the arrow operator: ->

Calling Methods - Pointers

// Create a new Point, get a pointer to it

Point* p = new Point(5, 5);

// Dereference and call

int x = (*p).GetX();

// Or use “->” syntax
// Essentially “dereference and call”

int y = p->GetY();

Creating Classes/ Building

Basically, you need two files
o .h file: Sets up basic class declaration & definition

o .cpp (or .cc) implementation/ code

Compiling
-Same as “C” i.e. gcc or g++ and Makefile

