
Intro to Classes in
C++

Classes
Programmer-defined types

Made up of members
◦ Variables
◦ Functions – called methods when part of a class
◦ Constructors: Initialize the class
◦ Destructors: Clean up as the class is being removed/ deleted

Concept is the same as C#, Java, etc.

Where C-structs have only variables, C++ classes are complete objects with
methods plus data

Still use .h files for ‘defining’; Use .cpp or .cc files for implementation

Syntax, semantics and
concepts

Similarities:

- include files

- Basic if/ then/ else/ while control
structures

- Must still manage your own
memory (but now for objects as well
as data)

- Can actually write typical C code
(and not use C++ enhancements)

Differences:

- include (.h) files define the class structure only

- .cpp files implement the classes (sometimes .cc
files)

- new and delete (vs. malloc and free)

- Abstract classes as ‘templates’

- public/ private/ protected variables and methods

- constructors and destructors

- override and virtual methods

- inheritance and polymorphism

- ‘streams’ for I/O (e.g. ‘cout’ vs. ‘printf’)

- namespaces for scope

- iterators

[And g++ compiler in Linux]

While ‘C’ syntax can be used, C++ class and object syntax can be quite different

Class Declaration – Point.h
Generally declared in a header file

◦ Separate declaration and definition
◦ Allows multiple files to #include declaration

Starts with class keyword
◦ Capitalized by convention

class Point

{

}; // Notice the semicolon!

Class Access Specifiers
By default, all class members are private

Change with access specifiers
◦ public [visible to everyone]

◦ private [visible only to the original class]

◦ protected [visible to the original class and derived classes]

Usage is different from C# / Java
◦ Define sections with specified access

Access Specifier Example
class Point

{

public:

// All public members here

// As many as you want

private:

// All private members here

// As many as you want

int x;

int y;

};

Constructors
Code to be run when object is created

◦ Ideally gives all variables useful values

◦ “Constructs” the object

Called automatically when object is created

Can have zero parameters
◦ Default constructor

Can require parameters

Constructor Declaration
class Point

{

public:

Point(); // Default Constructor

Point(int x, int y); // Constructor

private:

int x; // Member variable

int y; // Member variable

};

Methods
Functions declared as class members

◦ “Member functions”

Methods have access to other class members
◦ Other methods

◦ Variables

Methods can use “this” keyword
◦ A pointer to this object

◦ More on pointers & objects soon

Method Example
class Point

{

public:

Point(); // Default Constructor

Point(int x, int y); // Constructor

int GetX(); // Method

int GetY(); // Method

private:

int x; // Member variable

int y; // Member variable

};

Class Implementation –
Point.cpp
Generally defined in a .cpp file

◦ #include associated header file

Should define code of all members
◦ Methods

◦ Constructors

◦ Destructors

No “class” keyword in .cpp file!
◦ Must use scope operator

Point.cpp - Example Part 1
#include “Point.h"

// Constructors – Notice class name before ::

Point::Point()

{

x = 0;

y = 0;

}

Point::Point(int x, int y)

{

// More on the “->” soon

this->x = x;

this->y = y;

}

Point.cpp - Example Part 2
// The rest of the file

// Methods – Again, class name before ::

int Point::GetX() { return x; }

int Point::GetY() { return y; }

Remember this? - Memory Organization

◼ The call stack grows from the
top of memory down.

◼ Code is at the bottom of
memory.

◼ Global data follows the code.

◼ What's left – the "heap" - is
available for allocation.

Binary Code

Global
Variables

0

Function Call
Frames

sp

Available
for
allocation

The
Stack

The
Heap

When you declare a pointer

int *pInt;

It is pointing to NOTHING

You need to create a valid ‘chunk’ of

memory, and assign the pointer to that

valid memory

Similar in C++

The stack now holds local objects as

well as data

Dynamic alloation for objects (and data)

is from the heap

RAII
Resource Acquisition Is Initialization

- Objects Own Resources

- Constructor is automatically called for initialization

- Where an object goes out-of-scope (e.g. end of a method), it’s
destructor is automatically called

◦ Also called when you delete an object

- The object is then responsible for releasing its own resources

This is C++’s way of a more memory safe object management
framework (without garbage collection)

Lifecycle
//create the object
MyClass *pObject = new MyClass();
….
…
//Do stuff with the object (call methods etc)
…
…
delete pObject; //destroy the object

constructor

Object lifecycle

destructor

Instantiating Objects of a Class
Objects are instances of a class

Can be on the stack or the heap
◦ Just like arrays & other variables

Many syntax options for creating objects

For example …

class widget
{
private:

int* data;
public:

widget(const int size) { data = new int[size]; } // acquire
~widget() { delete[] data; } // release
void do_something() {}

};

void functionUsingWidget() {
widget w(1000000);
//lifetime automatically tied to enclosing scope
//constructs w, including the w.data member
w.do_something();

} // automatic destruction and deallocation for w and w.data

Objects on the Stack
int main()

{

// Call constructors, but not saved in variables

Point(); // Default constructor

Point(5,5); // Parameterized

// Variables

Point p1; // Default

Point p2(); // NEITHER!

Point p3(5, 5); // Parameterized

Point p4 = Point(); // Default

Point p5 = Point(5, 5); // Parameterized

}

What’s Wrong With This?
What’s wrong with this line:

Point p2();

Looks like it should call default constructor

Technically a function declaration
◦ A function named p2, which returns a Point

◦ Yes, even though it’s in the main!

Objects on the Heap
// Remember: new returns a pointer!

int main()

{

// Call default constructor

Point* p6 = new Point;

Point* p7 = new Point();

// Call parameterized constructor

Point* p8 = new Point(5,5);
}

Destructors – time to clean up
// Called when the object
is destroyed (stack or
delete)!

class Point

{

public:

Point(); // Default
Constructor

~Point(); // Destructor

private:

MyObject* pObject;

};

Point::~Point()

{

if (pObject)

{

delete pObject;

pObject = nullptr;

}

};

Calling Methods – Local
Variables
Can call methods once you have an object

Local variable method syntax is simple:

// Create a point

Point p = Point(5, 5);

// Get the x value

int x = p.GetX();

Calling Methods - Pointers
Not as straight-forward

Can’t call a method on a memory address

Must dereference first, then call method
◦ Or use the arrow operator: ->

Calling Methods - Pointers
// Create a new Point, get a pointer to it

Point* p = new Point(5, 5);

// Dereference and call

int x = (*p).GetX();

// Or use “->” syntax

// Essentially “dereference and call”

int y = p->GetY();

Creating Classes/ Building
Basically, you need two files

◦ .h file: Sets up basic class declaration & definition

◦ .cpp (or .cc) implementation/ code

Compiling
- Same as “C” i.e. gcc or g++ and Makefile

