OOP In C++

Object Oriented Programming

Four major features:

° Encapsulation
° Inheritance

° Polymorphism

o Abstraction

Encapsulation

Controlling access to the data of an object
o Sometimes called “Data Hiding”

Other languages
o Handled with getters & setters in Java

o Handled with Properties in C#

C++ uses getters and setters as well

Encapsulation Example

class Car

public:
Car();

// Getters
int getMiles();
char* getColor();

// Setters - Can’t directly set miles
void setColor(char* newColor);

private:
int miles;
char* color;

s

Inheritance

Basing a class on another class
o Parent — Child relationship

° Promotes code reuse

CH# and Java support single inheritance
o Can only inherit from a single class at most

C++ supports multiple inheritance
o Can inherit from any number of classes
° Sometimes problematic

Multiple Inheritance Issues

The “Diamond Problem”

A

A is the base (parent) class ﬁ b\
o B and Cinherit from A
o Dinherits both B and C B C
What if B and C each override
a method from A? D

o Which version does D get?

Example

* Name

Use the “Is a”
syntax

Student Faculty

class TA : public Faculty, public Student

{..
%

Access Levels

Same basic access levels as other languages

Public — All code can access
Private — Only accessible to code in this class

Protected — Accessible to code in this class
and any child classes

Inheritance Syntax

Syntax should look mostly familiar

class Child : public Parent
1}

Notice the access specifier
o Specifies the access of the inheritance

° Which parts “outside code” has access to

Public vs. Private Inheritance
class Child : public Parent { };

From outside the Child class, the Parent’s public inherited members can
be accessed

This is how inheritance works in CH# & Java

Public vs. Private Inheritance

class Child : private Parent { };
class Child : Parent { };
// private by default!

From outside the Child class, the Parent’s public inherited members are
inaccessible!
o Child can still access them, but no one else can

As if they were actually private members to begin with

Inheritance Example

class base
{
public:
int x;
protected:
inty;
private:
int z;
7

class publicDerived: public base

{

// x is public

// y is protected

// z is not accessible from publicDerived
2
class protectedDerived: protected base
{

// x is protected

/]y is protected

// z is not accessible from protectedDerived
|7

class privateDerived: private base

{

// x is private

/]y is private
// z is not accessible from privateDerived

Base Class Members

Access base class members by preceding the member name with the
class name

void Child::printChild()
{

Parent::printParent();

cout << “Also a child!” << endl;

There’s no “base” keyword

Base Class Constructors

We have the following class hierarchy:

class Child : public Parent
{ /* code omitted */ };

The Child constructor will automatically call the Parent’s default constructor

Child::Child(int a, int b)
{

// Parent’s default constructor automatically called
// Constructor code here

Base Class Constructors

Every class in the inheritance hierarchy must have one of its
constructors called

o Either implicitly - automatically

o Or explicitly — as show below

Calling Parent’s constructor from Child:

Child::Child(int a, int b) : Parent(a, b)
{

// Constructor code here

Polymorphism .,.

Treating a child class object as an object of its parent class

Literally means “many forms”

Works with variables and pointers!

&=
Dog Jf cat_

Polymorphism with Variables

// Create some objects (on the stack)

Dog dog = Dog();
Cat cat = Cat();

Animal animal = Animal();

// Attempt to store a child in a parent variable
Animal a2 = dog; // Implicit cast
Animal a3 = (Animal)cat; // Explicit cast

// Cats and dogs are animals!

Polymorphism with Pointers

// Create some objects (on the heap)

Dog* dog = new Dog();
Cat* cat = new Cat();

Animal* animal = new Animal();

// Attempt to store a child in a parent variable
Animal* a2 = dog; // Implicit cast
Animal* a3 = (Animal*)cat; // Explicit cast

// Cat pointers and dog pointers are

Virtual methods

Virtual methods are intended to be over-ridden by class Horse
derived (child) classes

E.g.
public:
class Animal
void
public:
//Default ctor private:
virtual void
private:
Ss

Upcast and downcast

Downcast: Parent parent;

- Convert parent class to child Child child;

Upcast:

- Convert child class to parent // upcast - implicit type cast allowed

Parent *pParent = &child;

// downcast - explicit type case required

Child *pChild = (Child *) &parent;

pParent -> sleep();

pChild -> gotoSchool();

Abstraction

Abstraction means removing details of features, properties, or functions
and emphasizing the more important/ relevant ones ...

11

Relevant” to what?

.. relevant to the given project (with an eye to future reuse in similar
projects)

Abstraction => managing complexity

More Abstraction

Abstraction is something we do every day
° Looking at an object, we see those things about it that have meaning to us

o We abstract the properties of the object, and keep only what we need
o e.g. students get "name" but not "color of eyes"

Allows us to represent a complex reality in terms of a simplified model

Abstraction highlights the properties of an entity that we need and
hides the others

Abstraction in C++

Abstraction is accomplished by hiding details of implementation

#include <iostream>
using namespace std;

class sample {
public:
intgl, g2;

public:
void val()

{

cout << "Enter Two values : "; cin >> gl >> g2;

}
void display()
{
cout<<glz<""
cout << endl;
}
|7

int main()

<< g2;

sample S;
S.val();
S.display();

