
OOP in C++

Object Oriented Programming
Four major features:

◦ Encapsulation

◦ Inheritance

◦ Polymorphism

◦ Abstraction

Encapsulation
Controlling access to the data of an object

◦ Sometimes called “Data Hiding”

Other languages
◦ Handled with getters & setters in Java

◦ Handled with Properties in C#

C++ uses getters and setters as well

Encapsulation Example
class Car
{
public:

Car();

// Getters
int getMiles();
char* getColor();

// Setters – Can’t directly set miles
void setColor(char* newColor);

private:
int miles;
char* color;

};

Inheritance
Basing a class on another class

◦ Parent – Child relationship

◦ Promotes code reuse

C# and Java support single inheritance
◦ Can only inherit from a single class at most

C++ supports multiple inheritance
◦ Can inherit from any number of classes

◦ Sometimes problematic

Shape

Circle Square

Multiple Inheritance Issues
The “Diamond Problem”

A is the base (parent) class
◦ B and C inherit from A

◦ D inherits both B and C

What if B and C each override
a method from A?

◦ Which version does D get?

Example

Student Faculty

Person

TA

• Name
• AgeUse the “Is a”

syntax

class TA : public Faculty, public Student
{ …

};

Access Levels
Same basic access levels as other languages

Public – All code can access

Private – Only accessible to code in this class

Protected – Accessible to code in this class
and any child classes

Inheritance Syntax
Syntax should look mostly familiar

class Child : public Parent

{ };

Notice the access specifier
◦ Specifies the access of the inheritance

◦ Which parts “outside code” has access to

Public vs. Private Inheritance
class Child : public Parent { };

From outside the Child class, the Parent’s public inherited members can
be accessed

This is how inheritance works in C# & Java

Public vs. Private Inheritance
class Child : private Parent { };

class Child : Parent { };

// private by default!

From outside the Child class, the Parent’s public inherited members are
inaccessible!

◦ Child can still access them, but no one else can

As if they were actually private members to begin with

Inheritance Example
class base

{
public:

int x;
protected:

int y;
private:

int z;
};

class publicDerived: public base
{

// x is public
// y is protected
// z is not accessible from publicDerived

};

class protectedDerived: protected base
{

// x is protected
// y is protected
// z is not accessible from protectedDerived

};

class privateDerived: private base
{

// x is private
// y is private
// z is not accessible from privateDerived

}

Base Class Members
Access base class members by preceding the member name with the
class name

void Child::printChild()

{

Parent::printParent();

cout << “Also a child!” << endl;

}

There’s no “base” keyword

Base Class Constructors
We have the following class hierarchy:

class Child : public Parent

{ /* code omitted */ };

The Child constructor will automatically call the Parent’s default constructor

Child::Child(int a, int b)

{

// Parent’s default constructor automatically called

// Constructor code here

}

Base Class Constructors
Every class in the inheritance hierarchy must have one of its
constructors called

◦ Either implicitly - automatically

◦ Or explicitly – as show below

Calling Parent’s constructor from Child:

Child::Child(int a, int b) : Parent(a, b)

{

// Constructor code here

}

Polymorphism
Treating a child class object as an object of its parent class

Literally means “many forms”

Works with variables and pointers!

Animal

Dog Cat

Polymorphism with Variables
// Create some objects (on the stack)

Dog dog = Dog();

Cat cat = Cat();

Animal animal = Animal();

// Attempt to store a child in a parent variable

Animal a2 = dog; // Implicit cast

Animal a3 = (Animal)cat; // Explicit cast

// Cats and dogs are animals!

Polymorphism with Pointers
// Create some objects (on the heap)

Dog* dog = new Dog();

Cat* cat = new Cat();

Animal* animal = new Animal();

// Attempt to store a child in a parent variable

Animal* a2 = dog; // Implicit cast

Animal* a3 = (Animal*)cat; // Explicit cast

// Cat pointers and dog pointers are
// animal pointers

Virtual methods
Virtual methods are intended to be over-ridden by
derived (child) classes

E.g.

class Animal

{

public:

Animal(); //Default ctor

virtual void Speak();//Will over-ride

…
private:

…

};

ss

class Horse

{

public:

…

void Speak(); //Make it neigh!!

…
private:

…

};

Upcast and downcast
Downcast:

- Convert parent class to child

Upcast:

- Convert child class to parent

Parent parent;

Child child;

// upcast - implicit type cast allowed

Parent *pParent = &child;

// downcast - explicit type case required

Child *pChild = (Child *) &parent;

pParent -> sleep();

pChild -> gotoSchool();

Abstraction
Abstraction means removing details of features, properties, or functions
and emphasizing the more important/ relevant ones ...

... relevant to the given project (with an eye to future reuse in similar
projects)

Abstraction => managing complexity

"Relevant" to what?

More Abstraction
Abstraction is something we do every day

◦ Looking at an object, we see those things about it that have meaning to us

◦ We abstract the properties of the object, and keep only what we need

◦ e.g. students get "name" but not "color of eyes"

Allows us to represent a complex reality in terms of a simplified model

Abstraction highlights the properties of an entity that we need and
hides the others

Abstraction in C++
Abstraction is accomplished by hiding details of implementation

#include <iostream>
using namespace std;

class sample {
public:

int g1, g2;

public:
void val()
{

cout << "Enter Two values : "; cin >> gl >> g2;
}
void display()
{

cout << g1 << " " << g2;
cout << endl;

}
};
int main()
{

sample S;
S.val();
S.display();

}

