
Bits and Shifts

C Language Programming 
Selected Topics



Logical and Bitwise Operators



Logical Operators

• A logical operator is used to combine 2 or more conditions in 
an expression.

• Logical AND - &&
– Operator && returns true when both the conditions in consideration 

are true; else false

• Logical OR - ||
– Operator || returns true when either or both the conditions in 

consideration are true; else false

• Logical NOT - !
– Operator ! returns true when either or both the conditions in

consideration are true; else false

• Logical XOR
– In the Boolean sense, this is just != (not equal)



Logical example

int a = 10, b = 4, c = 10, d = 20;

// logical AND example 
if (a > b && c == d)

printf("a is greater than b AND c is equal to d\n");
// doesn’t print because c != d

// logical OR example 
if (a > b || c == d)

printf("a is greater than b OR c is equal to d\n");
// NOTE: because a>b, the clause c==d is not evaluated

// logical NOT example 
if (!a)

printf("a is zero\n"); // doesn’t print because a != 0



Bitwise Operators

• A key feature of C essential to RT & ES programming is the set 
of bit manipulations

• Microcontrollers are filled with pages and pages of registers 
that control MCU peripheral hardware. These are all bit- 
based definitions.

• Some peripherals 
from STM32
Reference Manual…





C Bitwise Operators

Operator Meaning

& Bitwise AND Result is 1 if both bits are 1

| Bitwise OR Result is 1 if either bit is 1

^ Bitwise XOR Result is 1 if both bits are different

>> Right shift Result is divided by 2
<< Left shift Result is multiplied by 2

~ Ones complement The logical invert, same as NOT

C has 6 operators for performing bitwise operations on integers



Bitwise Boolean examples
char j = 11; // 0 0 0 0 1 0 1 1 = 11
char k = 14; // 0 0 0 0 1 1 1 0 = 14

Bitwise Boolean Operators
char m = j & k; // 0 0 0 0 1 0 1 0 = 10
char n = j | k; // 0 0 0 0 1 1 1 1 = 15
char p = j ^ k; // 0 0 0 0 0 1 0 1 = 5



Shifting and Inversion



Shifting

Shifting
char j = 11; // 0 0 0 0 1 0 1 1 = 11
char k = j<<1; // 0 0 0 1 0 1 1 0 = 22 (j*2)
char m = j>>1; // 0 0 0 0 0 1 0 1 = 5 (j/2)



Shifting
char s1, s2, s3, s4;
s1=-11; // 1 1 1 1 0 1 0 1 -11
s2=s1>>1; // 1 1 1 1 1 0 1 0 -6

s3=117; // 0 1 1 1 0 1 0 1 117
s4=s3>>1; // 0 0 1 0 0 0 0 0 58

// sign extension!

unsigned char u1, u2;
u1=255; // 1 1 1 1 0 1 0 1 245
u2=u1>>1; // 0 1 1 1 1 1 1 1 122

// no sign extension!



Inversion

Logical invert
char j = 11; // j = 0 0 0 0 1 0 1 1 = 11
char k = ~j; // k = 1 1 1 1 0 1 0 0 = 244

// Note: j + k = 255


