Software En, gineering
Rochester Institute
of Technology

Bits and Shifts

C Language Programming
Selected Topics

Logical and Bitwise Operators

@ Logical Operators

Software Engineering

Rochester Institute
of Technology

* Alogical operator is used to combine 2 or more conditions in
an expression.

* Logical AND - &&

— Operator && returns true when both the conditions in consideration
are true; else false

* Logical OR- ||

— Operator | | returns true when either or both the conditions in
consideration are true; else false

* Logical NOT - |

— Operator ! returns true when either or both the conditions in
consideration are true; else false

* Logical XOR
— In the Boolean sense, this is just != (not equal)

@ Logical example

Software Engineering

Rochester Institute
of Technology

int a =10, b =4, c = 10, d = 20;

// logical AND example
if (a > b & ¢ == d)

printf("a is greater than b AND c is equal to d\n");
// doesn’t print because c !=d

// logical OR example
if (a > b || ¢ == d)
printf("a is greater than b OR c¢ is equal to d\n");
// NOTE: because a>b, the clause c==d is not evaluated

// logical NOT example
if (la)

printf("a is zero\n"); // doesn’t print because a != 0

)

Software Engineering

Rochester Institute
of Technology

Bitwise Operators

* A key feature of C essential to RT & ES programming is the set

of bit manipulations

* Microcontrollers are filled with pages and pages of registers
that control MCU peripheral hardware. These are all bit-

based definitions.

 Some peripherals
from STM32
Reference Manual...

D 7 Clock recovery system (CRS) (only valid for STM32L496xx/4A6xx devices)
ﬂ 8 General-purpose 1/Os (GPIO)

ﬂ 9 System configuration controller (SYSCFG)

ﬂ 10 Peripherals interconnect matrix

ﬂ 11 Direct memory access controller (DMA)

D 12 Chrom-Art Accelerator™ controller (DMA2D)

ﬂ 13 Nested vectored interrupt controller (NVIC)

[1 14 Extended interrupts and events controller (EXTI)
ﬂ 15 Cyclic redundancy check calculation unit (CRC)
[1 16 Flexible static memory controller (FSMC)

[1 17 Quad-SPI interface (QUADSPI)

[1 18 Analog-to-digital converters (ADC)

ﬂ 19 Digital-to-analog converter (DAC)

23.5 OPAMP registers

23.51 OPAMP1 control/status register (OPAMP1_CSR)

Address offset: 0x00
Reset value: 0x0000 0000

Software Engineering

Rochester Institute
of Technology

31 a3 20 28 27 26 25 24 23 2 2 2 19 18 17 18
OPA_
RANGE
w
s 1@ 138 12 n__ 1 o 8 7 6 5 3 3 2 1 0
o || SN |caom o | vmse PGAGAN | OPAMODE | T |oPAEN
r w w w w w I w w | w w I w w w

Bit 31 OPA_RANGE: Operational amplifier power supply range for stability
All AOP must be in power down to allow AOP-RANGE bit write. It applies to all AOP
embedded in the product.

0: Low range (VDDA < 2.4V)
1: High range (VDDA > 2.4V)
Bits 30:16 Reserved, must be kept at reset value.

Bit 15 CALOUT: Operational amplifier calibration output
During calibration mode offset is trimmed when this signal toggle.
Bit 14 USERTRIM: allows to switch from ‘factory’ AOP offset timmed values to AOP offset ‘user’
trimmed values
This bit is active for both mode normal and low-power.
0: ‘factory’ trim code used
1: ‘user’ trim code used
Bit 13 CALSEL: Calibration selection
0: NMOS calibration (200mV applied on OPAMP inputs)
1: PMOS calibration (VDDA-200mV applied on OPAMP inputs)
Bit 12 CALON: Calibration mode enabled

0: Normal mode
1: Calibration mode (all switches opened by HW)

)

C Bitwise Operators

Software Engineering

Rochester Institute
of Technology

C has 6 operators for performing bitwise operations on integers

“opersor meaning |

& Bitwise AND Result is 1 if both bits are 1
| Bitwise OR Result is 1 if either bitis 1
A Bitwise XOR Result is 1 if both bits are different
>> Right shift Result is divided by 2
<< Left shift Result is multiplied by 2

~ Ones complement The logical invert, same as NOT

S

Software Engineering

char j

char k

Bitwise Boolean examples

11;
14;

// 0 001011
// 0001110

Bitwise Boolean Operators

C
C
C

nar m
nar n

nar p

J
J
J

&
|

N\

<
<

<

// © 90001010
// 0001111
// 90 0001601

11
14

10
15

Shifting and Inversion

Shifting

Shifting

char j = 11; // 0 001011-=11

char k = j<k1; // 0600101160 =22 (j*2)
charm=4>>1; // 00000101=5 (j/2)

Shifting

char sl1, s2, s3, s4;

sl=-11; // 1 1 110 101 -11
s2=Ss1>>1; //1 1 1 1 160e 10 -6
s3=117; // 6 1 110101 117
s4=s3>>1; // © 6 1 0 0 0 0 @ 58

// sign extension!

unsigned char wul, u2;

ul=255; //1 1 11 0 10 1 245

u2=ul>>1; // 6 1 1 1 111 1 122
// no sign extension!

@ Inversion

Software Engineering

Rochester Institute
of Technolo gy

Logical invert

char j = 11; // J=006001011-= 11
char k = ~j; // k=11110100 = 244
// Note: j + k = 255

