
SWEN-250 Personal SE

Introduction to C

A Bit of History
• Developed in the early to mid 70s
– Dennis Ritchie as a systems programming language.
– Adopted by Ken Thompson to write Unix on a the PDP-11.

• At the time:
– Many programs written in assembly language.
– Most systems programs (compilers, etc.) in assembly

language.
– Essentially ALL operating systems in assembly language.

• Proof of Concept
– Even small computers could have an OS in a HLL.
– Small: 64K bytes, 1μs clock, 2 MByte disk.
– We ran 5 simultaneous users on this base!

But Efficiency Wasn't Cheap in the
70s

• Code written in assembly
• High level languages in their infancy
• Desire to write programs with fewer lines of code, but retain control
• C as a consequence:

– Has types (but they can be easily ignored).
– Has no notion of objects (just arrays and structs)

• OO was a mostly a research topic
– Permits pointers to arbitrary locations in memory (
– Has no garbage collection – it's the programmer's job to manage

memory.
• C was a major advancement from FORTRAN, MACRO ASSEMBLER,

BUT:
– Very powerful and doesn't get in your way.
– Very dangerous and you can cut off your fingers.

Most languages have borrowed
from C

• { and } for grouping.
• Prefix type declaration (e.g., int i vs. i : int).
• Control structures (mostly)

– if, switch
– while, for

• Arithmetic (numeric) operations:
– ++ and -- (prefix and suffix)
– op= (e.g. += *=, etc.)
– + - * / %

• Relational & boolean operators:
– < > <= >= != ==
– ! || &&

• C++
• Java
• C#
• Javascript
• PHP
• …

Things Uniquely C vs.
Interpreted languages

• Today
– No classes – just functions & data.
– Characters are just small integers.
– No booleans. *
– Limited visibility control via #include and separate compilation.
– Simple manifest constants via #define

• Later
– Array size fixed at compile time.
– Strings are just constant arrays.
– Simple data aggregation via structures (struct)
– And, last but not least – POINTERS!!!

*In the C99 version, there is ‘_Bool’. However C99 is not universally
adopted.

Compiled vs. Interpreted

• Short version
– Compiled languages are converted to CPU specific

binary code and then run (C/ C++/ FORTRAN/
Eiffell, PL-I …)

– Interpreted languages are converted to
intermediate ‘bytecode’ and run within a runtime
library which is specific to each CPU/ OS (Java, C#,
Ruby, …)

Compiled vs. interpreted
languages

Language

Parser

Compiler

Assembler

Binary/ Executable

Language

Parser

IDL

Runtime Libraries

CPU

C
\
C
+
+

J
a
v
a
/
C
#

CPU

OS/
CPU
speci
fic

Pre-Processor

For ‘C’, you will need to execute a command like
gcc –o <outputfile> <inputfile.c>

Basics: 2 file approach

Definition file Implementation file

.h file (header) .c/ .cpp file on Windows

‘include’ this file
to reference:
- Variables
- Functions
- Classes

Your
implementation
code goes here

.c/ .cc file on *nix

In very, very trivial programs (i.e. just a few line of code in ‘main’, you may
get away with not adding a ‘.h file)

stdin and stdout

• You will typically work from the command line
(console)

• stdin is ‘standard in(put)’
– This is where C will assume any incoming data is

‘input’ from. Usually the command line, but often
used via redirection from a file

• stdout is ‘standard out(put)’
– Normally output (from printf or puts) goes to the

console, but can also be redirected

Functions & Data
• C functions – like methods free from their class.
• The most important function: main
• Example: Hello, world

#include <stdlib.h>
#include <stdio.h>

int main() {
 puts("Hello, world!") ;
 return 0 ;
}

Functions & Data
• C functions – like methods free from their class.
• The most important function: main
• Example: Hello, world

#include <stdlib.h>
#include <stdio.h>

int main() {
 puts("Hello, world!") ;
 return 0 ;
}

Includes interface
information to other
modules
Similar to import in Java
But done textually!!

Functions & Data
• C functions – like methods free from their class.
• The most important function: main
• Example: Hello, world

#include <stdlib.h>
#include <stdio.h>

int main() {
 puts("Hello, world!") ;
 return 0 ;
}

stdlib
atoi, atol, atof
memory allocation
abort, exit, system, atexit
qsort, bsearch [advanced]

Functions & Data
• C functions – like methods free from their class.
• The most important function: main
• Example: Hello, world

#include <stdlib.h>
#include <stdio.h>

int main() {
 puts("Hello, world!") ;
 return 0 ;
}

stdio
getchar, fgetc, putchar, fputc
printf, fprintf, sprintf
gets, puts, fgets, fputs
scanf, fscanf, sscanf

Functions & Data
• C functions – like methods free from their class.
• The most important function: main
• Example: Hello, world

#include <stdlib.h>
#include <stdio.h>

int main() {
 puts("Hello, world!") ;
 return 0 ;
}

Every C program has a main
function – the first function called.
main returns exit status.
 0 = ok
 anything else = abnormal.

Functions & Data
• C functions – like methods free from their class.
• The most important function: main
• Example: Hello, world

#include <stdlib.h>
#include <stdio.h>

int main() {
 puts("Hello, world!") ;
 return 0 ;
}

puts, from stdio, prints a string and
appends a newline ('\n').
Strings are simpler in C than Java.
C strings are just arrays of characters.

Comments
#include <stdlib.h>
#include <stdio.h>

/*This is a comment*/

int main() {
puts("Hello, world!") ;
return 0 ;

}

Printing to the console

• The ‘C’ function printf can also be used to
print strings or other data
printf("Hello printf world\n");
printf("%s\n","Hello %s");
int i = 5;
printf("Value of i is %d\n",i);

Note the special characters for \n and %s, %d
Note that variables are declared with the data type!
(int i;)

Flow control and iteration

Flow control in ‘C’
uses normal ‘if then
else’ syntax
if (value > 5)
{

printf(“It’s big\n”);
}
else
{

printf(“It’s small\n”);
}

Simple for loops look
like this

for (int i = 0; i < 5; i++)
{
 printf(“I = %d\n”, i);
}
OR
for (int i = 0; i < 22; i+=2)
{
 printf(“I = %d\n”, i);
}
 Watch for compiler differences. You may

need to declare your loop variable
OUTSIDE the for loop!

Characters are ASCII Bytes
• Consider the following C constants"

'a' 97(decimal) 0141(octal) 0x61(hex)

• In C they are all the same value – a small positive integer.
• That is, character constants are just small integers.

– Use the notation that expresses what you are doing:
– If working with numbers, use 97 (or 0141 / 0x61 if bit twiddling).
– If working with letters, use 'a'.
– Question: what is 'a' + 3?
– Question: if ch holds a lower case letter, what is ch - 'a'?

• Escape sequences with backslash:
– '\n' == newline, '\t' == tab, '\r' == carriage return
– '\ddd' == character with octal code ddd (the d's are digits 0-7).
– '\0' == NUL character (end of string in C).

Integer Types in C
• char
• unsigned char
• short
• unsigned short
• int
• unsigned int = unsigned
• long
• unsigned long
• long long
• unsigned long long

one byte = 8 bits - possibly signed
one byte unsigned
two bytes = 16 bits signed
two bytes unsigned
"natural" sized integer, signed
"natural" sized integer, unsigned
four bytes = 32 bits, signed
four bytes, unsigned
eight bytes = 64 bits, signed
eight bytes, unsigned

Another Example – Count
Punctuation

#include <stdlib.h>

#include <stdio.h>

#include <ctype.h>

int main() {

 int tot_punct = 0 ; // declare & init. a local variable

 int nchar ; // next character read

 while((nchar = getchar()) != EOF) {

 if(ispunct(nchar)) {

 tot_punct++ ;

 }

 }

 printf("%d punctuation characters\n", tot_punct) ;

 return 0 ;

}

Another Example – Count
Punctuation

#include <stdlib.h>

#include <stdio.h>

#include <ctype.h>

int main() {

 int tot_punct = 0 ; // declare & init. a local variable

 int nchar ; // next character read

 while((nchar = getchar()) != EOF) {

 if(ispunct(nchar)) {

 ++tot_punct ;

 }

 }

 printf("%d punctuation characters\n", tot_punct) ;

 return 0 ;

}

ctype
isalnum, isalpha, isdigit, iscntrl
islower, isupper, ispunct, isspace
isxdigit, isprint
toupper, tolower

Another Example – Count
Punctuation

#include <stdlib.h>

#include <stdio.h>

#include <ctype.h>

int main() {

 int tot_punct = 0 ; // declare & init. a local variable

 int nchar ; // next character read

 while((nchar = getchar()) != EOF) {

 if(ispunct(nchar)) {

 ++tot_punct ;

 }

 }

 printf("%d punctuation characters\n", tot_punct) ;

 return 0 ;

}

Next character from standard in.
Why int and not char?
Because EOF is negative!

Another Example – Count
Punctuation

#include <stdlib.h>

#include <stdio.h>

#include <ctype.h>

int main() {

 int tot_punct = 0 ; // declare & init. a local variable

 int nchar ; // next character read

 while((nchar = getchar()) != EOF) {

 if(ispunct(nchar)) {

 ++tot_punct ;

 }

 }

 printf("%d punctuation characters\n", tot_punct) ;

 return 0 ;

}

Common C idiom:
 Get & assign value
 Compare to control flow
= vs. == can kill you here.

Another Example – Count
Punctuation

#include <stdlib.h>

#include <stdio.h>

#include <ctype.h>

int main() {

 int tot_punct = 0 ; // declare & init. a local variable

 int nchar ; // next character read

 while((nchar = getchar()) != EOF) {

 if(ispunct(nchar)) {

 ++tot_punct ;

 }

 }

 printf("%d punctuation characters\n", tot_punct) ;

 return 0 ;

}

EOF defined in stdio.h as (-1)
 Not a legal character.
 Signals end-of-file on read.

Wait, what file??

Another Example – Count
Punctuation

#include <stdlib.h>

#include <stdio.h>

#include <ctype.h>

int main() {

 int tot_punct = 0 ; // declare & init. a local variable

 int nchar ; // next character read

 while((nchar = getchar()) != EOF) {

 if(ispunct(nchar)) {

 ++tot_punct ;

 }

 }

 printf("%d punctuation characters\n", tot_punct) ;

 return 0 ;

}

Helper function from ctype
True iff nchar is punctuation.

Another Example – Count Punctuation

#include <stdlib.h>

#include <stdio.h>

#include <ctype.h>

int main() {

 int tot_punct = 0 ; // declare & init. a local variable

 int nchar ; // next character read

 while((nchar = getchar()) != EOF) {

 if(ispunct(nchar)) {

 ++tot_punct ;

 }

 }

 printf("%d punctuation characters\n", tot_punct) ;

 return 0 ;

}

Formatted output to standard out.
printf = print formatted
 1st argument is format string
 Remaining arguments are printed
 according to the format.

Short Digression on Printf
• Format string printed as is except when encounters '%'

– %d print integer as decimal
– %f print floating point (fixed point notation)
– %e print floating point (exponential notation)
– %s print a string
– %c print integer as a character
– %o / %x print integer as octal / hexadecimal

• Format modifiers - examples
– %n.mf at least n character field with m fractional digits
– %nd at least n character field for a decimal value.

• Example:
printf("%d loans at %5.2f%% interest\n",nloans, pct) ;

• See the stdio.h documentation for more on format control.

Boolean = Integer
• There is no boolean type in C.*
• 0 is false, everything else is true.

– False: 0 0.0 '\0' NULL (0 pointer).
– True: 1 'a' 3.14159

• The result of a comparison operator is 0 or 1.
• Many programmers define symbolic constants:

#define TRUE (1)

#define FALSE (0)

• Pet Peeve:
SLOPPY
if (value < limit)
 return TRUE;

else
 return FALSE;

VERY BAD
return value < limit;

GOOD PRACTICE
int result = FALSE;
if (value < limit)
 result = TRUE ;
return result;

*In the C99 version, there is ‘_Bool’. However C99 is not universally
adopted.

Compilation
• Our systems use the GNU C compiler (gcc)
• The compilation process with two files (main.c, foo.c)
gcc –o myprog main.c foo.c

Pre-Processor AssemblerParser/ Compiler

main.c

foo.c

Linker

main.o

foo.o

myprog

Compilation
• Problems can occur all along the line:

– Unterminated comments can throw off the lexer.
– Syntax errors are detected by the parser.
– The code generator / optimizer can generate bad code (highly

unlikely).
– The linker may not be able to resolve all the external references.

• Notes on linking:
– Every object file has a table of contents.
– Some of the names are defined in the file (e.g., main).
– Some are needed from another file (e.g., printf).
– The linker tries to resolve these BUT:

• It may not be able to find a symbol it needs (missing file?)
• It may find two definitions of a symbol (name conflict).

