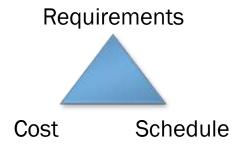
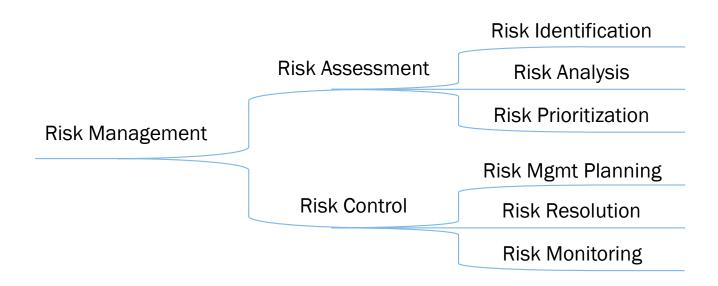
Risk Management


SWEN 256 - Software Process & Project Management

What is Risk?


- Problems that haven't happened yet
- Characterized by:
 - Uncertainty (0 < probability < 1)
 - An associated loss (money, life, reputation, etc)
 - Manageable some action can control it
- Needs to be actively identified and managed
 - Some choose to ignore seen as negativity or too much worry
- Is a key element in project decision making especially important for the tough decisions
- Proactive vs. Reactive
- Active Risk Management is a sign of a well-run project and a mature organization

Risk Classification

- Requirements Risks
 - Incorrect
 - Incomplete
 - Unclear or inconsistent
 - Volatile
- Cost Risks
 - Unreasonable budgets
- Schedule Risks
 - Schedule compression (customer, marketing, etc.)
- Quality Risks
- Life Cycle / Operational Risks
- Most of the "Classic Mistakes"

Risk Management Process

Understanding the hierarchy of Risk Management = Understanding risks and how to deal with them

Risk Identification

- - Don't go it alone
- Many approaches: ISO identified techniques (30)
- Some highlights:
- Brainstorming
- Checklist
 ∴
- Interviews
- SWIFT (Structured 'What-If'; Scenario Analysis
- Fault-Trees
- Incident Analysis
- Surveys

Risk Categories

Types

Business Risk Pure (Insurable) Risk

Known Unknowns

Unknown Unknowns

Classification

External Internal Technical Unforeseeable

Source

Schedul	e Cost	Quality	Scope	Resources	Customer
---------	--------	---------	-------	-----------	----------

Internal / Unique Classifications and Sources

Risk Analysis

- Numerical analysis of risk allows:
 - Make response decisions
 - Determine overall project risk
 - Add probability to predictions
 - Prioritize risks
 - Factor risk into cost, schedule, or scope targets
- Calculating Risk Exposure (RE)

$$RE = P * I$$
 $P = Probability$ $I = Impact$

Risk Analysis (Continued)

- Risk Exposure Examples (Time based)
 - "Facilities not ready on time"
 - Probability is 25%, size is 4 weeks, RE is 1 week
 - "Inadequate design redesign required"
 - Probability is 15%, size is 10 weeks, RE is 1.5 weeks
- Mow to Estimate (Example)
 - Impact: The size of the loss break into chunks
 - Probability:
 - Use team member estimates and have a risk-estimate review
 - Use Delphi or group-consensus techniques
 - Use gambling analogy" "how much would you bet"
 - Use "adjective calibration": highly likely, probably, improbable, unlikely, highly unlikely
- Sum all RE's to get expected overrun

Risk Prioritization

- Remember the 80-20 rule
- Often want largerloss risks higher
 - Or higher probability items
- Possibly group 'related risks'
- Helps identify which risks to ignore
 - Those at the bottom
- Use <u>Risk Register</u> (document & manage it!)

Risk Number	1	
NISK INUITIDE	±	
Risk Category	External (Inevitable)	
Risk Name	Zombie Apocalypse	
Probability (Scale)	1%	
Impact (Scale, Areas)	Delay project by 2 Weeks	
Score/ Risk Impact (P*I)	.02 Weeks	
Indicators	Moaning, Missing Brains	
Mitigation	Melee Weapons	
Contingency	Start Robot War	
Affected Stakeholders	Humanity	
Resource/Response Time	Those not yet bitten / Young attractive people	

Prioritization and Tracking

	Description	Likelihood	Impact	Score
1	Computer exploded	1	5	5
2	Everybody jumps ship	0.5	10	5
3	Lead Dev quits	5	8	40
4	Software License delay	4	10	40

Avoid 'Hand-wringing' on unlikely occurrences

	Description	Action	Owner	Due Date	Status
3	Lead Dev quits	Mgr. discussion	Mgr	9/21	Open
4	Software License delay	Expedite via procurement	Timmy	10/1	Open

Risk Management Planning

- Risk analysis and planning should continue throughout the project
- Look for 'first indicators'!
- Risks can be eliminated, but impact analysis should be completed first
- Develop risk response strategies
- McConnell's Example Section 5-5 of the Rapid Development Book

Risk Resolution

Risk	Avoid	Mitigate	Transfer	Accept
Opportunity	Exploit	Enhance	Share	Accept

- Risk Avoidance (not 'ignoring')
 - Don't do the project at all
 - Scrub from system
 - Off-load to another party
 - McConnell: design issue: have client design
- Problem control
 - Develop contingency plans
 - Allocate extra test resources

- Knowledge Acquisition
 - Investigate/ research
 - Ex: do a prototype
 - Buy information or expertise about it
- Risk Transfer
 - To another part of the project (or team)
 - Move off the critical path

Risk Monitoring

50 Top 10 Risk List

- Rank
- Previous Rank
- Weeks on List
- Risk Name
- Risk Resolution Status
- A low-overhead best practice
- Interim project post-mortems
 - After various major milestones
- Communicate w/ Stakeholders!

Risk Register

Risk Number

Risk Category

Risk Name

Probability (Scale)

Impact (Scale, Areas)

Score/ Risk Impact (P*I)

Indicators

Mitigation

Contingency

Affected Stakeholders

Resource/Response Time

Monitor and Control Risks

Concepts

- Workarounds unplanned corrective action for unanticipated problems
- Risk Reassessments periodic risk review and adjustments
- Risk Audits proves risk preparedness and provides lessons learned
- Reserve Analysis accounting for risk reserves (financial and schedule), which are only for risk
- Status Meetings should primarily focus on risks
- Closing Risks the conditions surrounding a risk are in the past, and the risk should be closed
- Outputs: Risk Register Updates, Change Requests, PM Plan Updates, Project Document Updates, Lessons Learned

Miniature Milestones

- Reduces risk of undetected project slippage
- Requires a detailed schedule, including early milestones
- Use binary milestones (done or not done)

» Pros

- Enhances status visibility
- Good for project recovery
- Can improve motivation through achievements
- Encourages iterative development

Solution Cons

Increase project tracking effort

Risk Management Conclusion

- Avoid Common Errors
- Risk Management should be the focus of Status Meeting
- Risk Management is often not used in Project Management, but has high ROI
- Don't confuse risk with something that has 'already happened'
- Risks are both good and bad
- Funds/time set aside for risks are necessary
- **50** Communicate

Questions/Discussion

	Description	Likelihood	Impact	Score
1				
2				
3				
4				

Scenario:

- We are building a new Medical Heart Rate monitoring application
 - Uses a small monitoring sensor from ACME Industries
 - Connects to phone via BT
 - Phone app connects to central server for trend and data management
 - Team is in place. 1 long term dev, 3 new ones.