
Sample Spark Web-App
Overview

Follow along with these instructions using the sample webapp project provided to you.
This guide will walk you through setting up your workspace, compiling and running a Java
application from the command line using Maven, and importing the project for use with IntelliJ
IDEA. Finally, you will be walked through the process of creating a GitHub repository and adding
your project to it.

Prerequisites
Prior to beginning, ensure you have installed the following tools. Download links and guides are
available on the Class Resources webpage.

 Java JDK 1.8 (download here)

 IntelliJ IDEA (download here)

 Maven (download here)

http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.jetbrains.com/idea/download/
https://maven.apache.org/download.cgi

Instructions
Follow along with these instructions. If you run into any issues, see the Troubleshooting section
for common issues you may run into, and how to resolve them.

Building and running the application from the command line using Maven
1. Download the sample webapp zip file provided to you on the course schedule.

Extract all of the files in the zip into an easy to locate directory.
2. Using Command Prompt (Windows) or Terminal (Mac), navigate to the top level of

the folder you extracted in Step 1. From there, use the following command to
compile and execute the Java application: mvn compile exec:java

a. “mvn” – run the Maven executable.
b. “compile” – tells Maven to compile the application.
c. “exec:java” – tells Maven to run the Java executable that is output from the

compile operation.
NOTE: the first time you run Maven on a new project it is likely that Maven will download dozens of
plugins and other libraries used by the project. This is could take a few minutes and is perfectly
normal.

3. Your project should now be running. Open a web browser and navigate to
http://localhost:4567/ or http://127.0.0.1:4567/ to see it in action.

 Expected output from compiling and executing the project using Maven

http://localhost:4567/
http://127.0.0.1:4567/

Importing the Maven project into IntelliJ IDEA
1. Launch the IntelliJ IDEA program. Select the option to Import a project using one of the

methods in the images below.

a.

b.
2. In the dialog window that appears, navigate to the guessing-game folder, select the

pom.xml file and click ‘Open’. The “Import Project from Maven” window should
appear.

3. Leave the default settings as-is and click ‘Next’.
4. Select the com.example:guessing-game… Maven project if it is not selected by default

and click ‘Next’.
5. Select the project SDK. For this class, we will be using the Java 1.8 JDK. If it isn’t shown

on the left, click the ‘+’ button in the top left and select ‘Java’ to import it manually.
After highlighting it on the left, click ‘Next’ to continue. Note: the JDK home path should
match your machine’s JAVA_HOME path.

6. Leave the project name and locations as-is and click ‘Finish’. A guessing-game.iml
project file will be created. The ‘iml’ file is a project file specific to IntelliJ. Select this file
when you want to open the project in the IntelliJ IDE.

Compiling and Running the project using IntelliJ
1. Open the guessing-game project in IntelliJ using the guessing-game.iml file.
2. To compile your project, select ‘Build module guessing-game’ from the ‘Build’ menu.
3. To run your project, you’re going to need to create a new Maven run configuration. To

do this, click ‘Edit Configurations’ from the ‘Run’ menu.
4. Click the ‘+’ button in the top left corner of the “Run/Debug Configurations” screen and

select Maven.
5. In the editor screen that appears, fill in the information as follows:

a. Name: GuessingGame
b. Working Directory: The default path should be the root of the project directory
c. Command line: exec:java
d. Profiles: Leave this line blank

6. Click ‘Apply’, then ‘OK’.
7. Run the project by opening the ‘Run’ menu from the toolbar and clicking ‘Run’. Specify

the run configuration we created above, GuessingGame. A console window should
appear and the output should be like what you saw when running the project manually.

8. Your project should now be running. Open a web browser and navigate to
http://localhost:4567/ or http://127.0.0.1:4567/ to see it in action.

http://localhost:4567/
http://127.0.0.1:4567/

Version Control using GitHub
In this section, we will walk through creating a private repository on GitHub and adding your
Java project to that repository. To create private repositories, you will need to sign up for the
GitHub Student Developer Pack. Note that it may take a few days to activate.

1. Begin by logging into your GitHub account. If you have not created one, you will need to
do so before continuing.

2. From the main screen, click the ‘+’ button in the top right corner, and select the option
to create a new repository.

3. On the “create a new repository page”, give the repository a name and select your
account as the owner if it is not by default.

4. Change the repository type to Private by selecting its radio button.
5. Do not initialize the repository with a README – one has already been provided for you.

6. Do not add a .gitignore file – one has already been provided for you.
7. When you are ready, click the “Create repository” button to proceed. You should be

redirected to your (empty) repository’s main page.
8. Using Command Prompt (Windows) or Terminal (Mac), navigate to the root of your

project’s directory. From there, initialize Git version control by running:
git init

9. Next, add the remote repository you created on GitHub using your project’s URL by
running:
git remote add origin [HTTPS://GITHUB.COM/NAME/REPOSITORY]

10. To test this, try committing your README.md file and pushing it to the GitHub
repository by using the following commands:
git add README.md

git commit -m README.md “created readme file”

git push origin master
11. Enter your GitHub credentials, if prompted to.
12. After the push process completes, refresh your GitHub repository page and you should

see your README.md file. Push the entirety of your local repository to GitHub by
running these commands:
git add --all

git commit -am “initial commit”

git push origin master

Tip: Don’t want to type your GitHub credentials every time? Cache your GitHub password in Git
by following this guide for Mac and Windows.

https://github.com/
https://education.github.com/pack
https://help.github.com/articles/caching-your-github-password-in-git/
https://help.github.com/articles/caching-your-github-password-in-git/

Troubleshooting
 JAVA_HOME / Path variable issues - If you get an error mentioning Java versions, or

an inability to locate a Java file path, ensure that you have Java 1.8 installed and that
it is correctly specified in your JAVA_HOME/PATH variable. Oracle has a decent
guide on this for Windows and Mac/Unix.

 A Maven error mentioning “no goals have been specified” or similar may mean you
are not executing from the correct location. You’ll want to run Maven commands
from the root of the project directory containing the pom.xml file which specifies
how the Maven project should be built.

 “Port number already in use” or similar errors indicate that the port being requested
is in use by another process. This most likely means you already have an instance of
the program running on your machine. You’ll have to locate / terminate that running
process before your new one will run.

 Having issues with Git / Github? Give GitHub’s Interactive tutorial a shot. Additional
tutorials are available on the Class Resources page.

https://docs.oracle.com/cd/E19182-01/820-7851/inst_cli_jdk_javahome_t/
https://docs.oracle.com/cd/E19182-01/820-7851/inst_cli_jdk_javahome_t/
https://try.github.io/

