
SWEN-261
Introduction to Software
Engineering

Department of Software Engineering
Rochester Institute of Technology

Sequence Diagrams

The sequence diagram is a basic tool for modeling dynamic
interactions between software entities.

▪ They are used to model the flow of logic within your system

▪ Can be used at various levels of abstraction including:
• Business workflow
• User story feature flow
• Object-level interactions

▪ At any abstraction level, sequence diagrams captures the high-level
information but not every detail

▪ The notation is simple to grasp
• Time progresses top to bottom
• Operations generally flow left to right
• Show method calls with parameters
• Show return values when important
• Can show creation and deletion of objects

2

We will look at this level.

Sequence Diagram Notations - Lifeline

▪ A lifeline represents an individual participant in the Interaction.

▪ They represent the different objects or parts that interact with each other in
the system during the sequence.

▪ A sequence diagram is made up of several of these lifeline notations that
should be arranged horizontally across the top of the diagram

▪ No two lifeline notations should overlap each other
3

Lifeline

Sequence Diagram Notations – Activation Bars

▪ Activation bar is the box placed on the lifeline.
• It is used to indicate that an object is active (or instantiated) during an interaction

between two objects.
• The length of the rectangle indicates the duration of the objects staying active

▪ An interaction between two objects occurs when one object sends a
message to another.

4

Message receiver
Activation Bar

Message caller
Activation Bar

Sequence Diagram Notations – Message Arrows

▪ A message can flow in any direction; from left to right, right to left or back
to the Message Caller itself
• While you can describe the message being sent from one object to the other on the

arrow, with different arrowheads you can indicate the type of message being sent or
received.

5

An asynchronous message is used
when the message caller does not wait
for the receiver to process the message
and return

Sequence Diagram Notations – Return message

▪ A return message is used to indicate that the message receiver is done
processing the message and is returning control over to the message caller
• Return messages are optional notation pieces, for an activation bar that is triggered

by a synchronous message always implies a return message.

6

Sequence Diagram Notations – Object creation and deletion

▪ Objects do not necessarily live for the entire duration of the sequence of
events
• Objects or participants can be created according to the message that is being sent.

7

The dropped participant box notation
can be used when you need to show
that the participant did not exist until
the create call was sent

when object no longer needed, it can
also be deleted by adding an ‘X’ at the
end of the lifeline

Sequence Diagram Notations – Self message

▪ A self message is a message that an object sends to itself.
• It is a message that represents the invocation of message of the same lifeline.
• A self message can represent a recursive call of an operation, or one method calling

another method belonging to the same object.

8

Sequence Diagram Notations – Self message

▪ A self message is a message that an object sends to itself.
• It is a message that represents the invocation of message of the same lifeline.
• A self message can represent a recursive call of an operation, or one method calling

another method belonging to the same object.

9

Sequence Diagram Notations – option fragment

▪ The option (opt) fragment is used to indicate a sequence that will only occur
under a certain condition, otherwise, the sequence won’t occur.
• It models the “if then” statement.

10

Only execute if condition == true

Sequence Diagram Notations – alternative fragment

▪ The alternative (alt) fragment is used when a choice needs to be made
between two or more message sequences.
• It models the “if then else” logic.

▪ There can be as many alternative paths as are needed
• If more alternatives are needed, all you must do is add an operand to the rectangle

with that sequence’s guard and messages.11

Manage complex interactions with sequence fragments.

▪ The type of fragment is determined by the fragment operator.

▪ You can use fragments to describe several control and logic structures in a
compact and concise manner.

12

Fragment

Operator

Description

opt Defines condition to a single call - the call will execute only if the supplied condition
is true. Equivalent to an alt with only one trace.

alt Divides fragment into groups and defines condition for each group - only the one
whose condition is true will execute

par Defines that the calls within the fragment run in parallel.

loop Defines that the calls within the fragment run in a loop.

region Defines that the calls within the fragment reside in a critical section, i.e. the
fragment can have only one thread executing it at once.

Register for Courses
Static feeds to => Dynamic model: SEQUENCE DIAGRAM UML 1.0

13

1) Static Model
(aka Class Diagram)

2) Dynamic Model
(aka Sequence Diagram)

Register for Courses
Same example more detailed SEQUENCE DIAGRAM UML 1.0

14

3) Dynamic Model
(refined)

These are the basic notations for sequence diagrams that you can
use. Our notation ≈UML 2.0

15

Object name indicates everything

What design principle
does this show?

Life of object ends

Exact object not known or
does not add information Fully qualified

Object creation

Method call with
no return value

Execute sequence a
number of times.

Method call with return value passing
through to originator of sequence

	Slide 1
	Slide 2: The sequence diagram is a basic tool for modeling dynamic interactions between software entities.
	Slide 3: Sequence Diagram Notations - Lifeline
	Slide 4: Sequence Diagram Notations – Activation Bars
	Slide 5: Sequence Diagram Notations – Message Arrows
	Slide 6: Sequence Diagram Notations – Return message
	Slide 7: Sequence Diagram Notations – Object creation and deletion
	Slide 8: Sequence Diagram Notations – Self message
	Slide 9: Sequence Diagram Notations – Self message
	Slide 10: Sequence Diagram Notations – option fragment
	Slide 11: Sequence Diagram Notations – alternative fragment
	Slide 12: Manage complex interactions with sequence fragments.
	Slide 13: Register for Courses Static feeds to => Dynamic model: SEQUENCE DIAGRAM UML 1.0
	Slide 14: Register for Courses Same example more detailed SEQUENCE DIAGRAM UML 1.0
	Slide 15: These are the basic notations for sequence diagrams that you can use. Our notation ≈UML 2.0

