
MMLS R2 – Implementation Evaluation Rubric Section and Team: team-info

This is the rubric that will be used for evaluating your Design Project implementation. The instructor will do spot checking of the

submitted source code to check these evaluation dimensions.

Dimension Exceptional

Performance

4

Competent

Performance

3

Acceptable

Performance

2

Developing

Performance

1

Beginning

Performance

0

Functionality

(75%)

Program flawlessly

provides all required

functionality

Program provides all

required functionality

with a few small bugs

Program provides most

required functionality or

has several bugs

Program starts but has

little functionality or the

functionality is so buggy

it is unusable.

Program never starts.

 No lingering problems from R1 seen

 Select between on-line MusicBrainz Web Service

database OR off-line database

 GUI to request and display music information

 Select between GUI or command line

 Multiple separate, persistent user libraries

 Undo/redo of adding/removing songs from library

Especially when artist is removed because there are

no more songs or releases

 Undo/redo of rating a song

File Header,

Method Header

and Code

Comments

(10%)

All header comments are

provided, and are short,

succinct, and clear

descriptions of the class,

method, etc., that they

describe. All necessary

areas are commented.

Every comment

significant, none is

verbose.

All header comments are

provided and describe

methods, classes, etc.,

appropriately but some

are verbose or confusing.

Few comments are

missing, unnecessary,

obvious, or verbose.

Some header comments

are missing, or are

incorrect with respect to

what a class, method, etc.

is responsible for. Several

comments missing,

unnecessary, obvious, or

verbose.

Many missing, incorrect,

inappropriate, or

misleading header

comments. Many

comments missing,

unnecessary, obvious, or

verbose.

No header comments. No

method body comments.

Methods

(10%)

Clear, cohesive methods

with appropriate args and

return types. Private

methods to reduce

complexity and factor out

repeated code. No

inappropriate choice of

statements, expressions

and control structures.

Methods have clear

purposes and

straightforward

implementations. Little

repeated code. Most

choices of statements,

expressions, and control

structures are appropriate.

Several long methods, or

noticeable repetitive

code. Several examples

of inappropriate

statement selection,

expressions, or control

structures.

Several methods with

complex interfaces,

compound (incohesive)

purposes, or a large

amount of repeated code.

Examples of poor

statement selection,

expressions, or control

structures.

Many methods with

overly complex

interfaces, incohesive

purposes, complex

implementations. Use of

unstructured coding

techniques.

Indentation and

Formatting

(5%)

Consistent indentation;

judicious use of white

space to set off blocks of

code.

Consistent indentation.

Adequate formatting.

Some inconsistencies in

indentation. Some

formatting problems.

Gross inconsistencies in

indentation;

inconsistencies among

team members.

No attempt at reasonable

indentation or readable

formatting

