
Design Patterns Information Sheet (no longer in strict alphabetical order)

Adapter. Convert the interface of a class into another interface clients

expect. Adapter lets classes work together that couldn't otherwise because

of incompatible interfaces.

Object Adapter

Class Adapter

Command. Encapsulate a request as an object, thereby letting you

parameterize clients with different requests, queue or log requests, and

support undoable operations.

Design Patterns Information Sheet (no longer in strict alphabetical order)

Composite. Compose objects into tree structures to represent part-whole

hierarchies. Composite lets clients treat individual objects and compositions

of objects uniformly.

Decorator. Attach additional responsibilities to an object dynamically.

Decorators provide a flexible alternative to subclassing for extending

functionality.

Facade. Provide a unified interface to a set of interfaces in a subsystem.

Facade defines a higher-level interface that makes the subsystem easier to

use.

Design Patterns Information Sheet (no longer in strict alphabetical order)

Iterator. Provide a way to access the elements of an aggregate object

sequentially without exposing its underlying representation.

Observer. Define a one-to-many dependency between objects so that when

one object changes state, all its dependents are notified and updated

automatically.

Memento. Without violating encapsulation, capture and externalize an

object's internal state so that the object can be restored to this state later.

Design Patterns Information Sheet (no longer in strict alphabetical order)

Proxy. Provide a surrogate or placeholder for another object to control

access to it.

State. Allow an object to alter its behavior when its internal state changes.

The object will appear to change its class.

Strategy. Define a family of algorithms, encapsulate each one, and make

them interchangeable. Strategy lets the algorithm vary independently from

clients that use it.

Template Method. Define the skeleton of an algorithm in an operation,

deferring some steps to subclasses. Template Method lets subclasses

redefine certain steps of an algorithm without changing the algorithm's

structure.

Builder. Separate the construction of a complex object from its

representation so that the same construction process can create different

representations.

Singleton. Ensure a class only has one instance, and provide a global point

of access to it.

Construct()

Director

for all objects in structure {
 builder->BuildPart()
}

Builder

BuildPart()

ConcreteBuilder1

BuildPart()
GetResult()

Product1

static Instance()
SingletonOperation()

GetSingletonData()

return uniqueInstance
Singleton

static uniqueInstance
singletonData

Product2

ConcreteBuilder2

BuildPart()
GetResult()

Design Patterns Information Sheet (no longer in strict alphabetical order)

Visitor. Represent an operation to be performed on the elements of an

object structure. Visitor lets you define a new operation without changing

the classes of the elements on which it operates.

Factory Method. Define an interface for creating an object, but let

subclasses decide which class to instantiate.

Mediator. Define an object that encapsulates how a set of objects interact.

Mediator promotes loose coupling by keeping objects from referring to each

other explicitly, and it lets you vary their interaction independently.

FactoryMethod()
AnOperation()

Creator

FactoryMethod()

ConcreteCreator

product = FactoryMethod()

Product

ConcreteProduct

return new ConcreteProduct()

Mediator

ConcreteMediator

Colleague

ConcreteColleague1

ConcreteColleague2

mediator

aColleague

mediator

aColleague

mediator

aColleague

 mediator

aColleague

mediator aColleague

 mediator

aConcreteMediator

Design Patterns Information Sheet (no longer in strict alphabetical order)

Abstract Factory. Provide an interface for creating families of related or

dependent objects without specifying their concrete classes.

Chain of Responsibility. Avoid coupling the sender of a request to its

receiver by giving more than one object a chance to handle the request.

Client

Client

aClient

handler
successor

aConcreteHandler

ConcreteHandler1

HandleRequest()

ConcreteHandler2

HandleRequest()

Handler

HandleRequest()
successor

successor

aConcreteHandler

AbstractFactory

CreateA()
CreateB()

ConcreteFactory2

CreateA()

CreateB()

ConcreteFactory1

CreateA()

CreateB()

AbstractA

ConcreteA1 ConcreteA2

AbstractB

ConcreteB1 ConcreteB2

…

