
SWEN-262
Engineering of Software Subsystems

Design Principles

Object Oriented Design
● Up to this point, you have studied

Object Oriented Design (OOD) at the
class level.

○ You have considered inheritance, but not much
beyond that.

● This semester you will need to expand
your skills to larger scale systems
comprising multiple subsystems.

○ You will need to consider the interactions
between classes and the effect that one class
has on other classes in the system.

● The software engineering community has
put forward sets of principles that we
will remind you of today.

Today we will look at
SOLID, GRASP, and
the Law of Demeter.

SOLID
S
O
L
I
D

ingle Responsibility Principle

pen-closed Principle

iskov Substitution Principle

nterface Segregation Principle

ependency Inversion Principle

The SOLID principles were
first described by Bob Martin.

Uncle Bob

While all of the SOLID
principles are important,

today we will briefly
discuss only five.

SOLID
S
O
L
I
D

ingle Responsibility Principle

pen-closed Principle

iskov Substitution Principle

nterface Segregation Principle

ependency Inversion Principle

Attack of the Blob!
Imagine we're making a drawing
program with tools to draw
rectangles and circles (among
other things).

What if we tried to create one
Shape class that was used to
draw both circles and squares?

Shape
-position: Position
-height: double
-width: double
-radius: double
-type: {Circle, Rectangle}

+move(Position p)
+scale(Float factor)
+draw(graphics g)
+contains(Position p)

It uses a type code and a bunch
of if/else statements to decide
whether to draw, more, or scale
like a circle or a square.

public void draw(Graphics g) {
 if(type == RECTANGLE) {
 // draw a rectangle
 }
 else if(type == CIRCLE) {
 // draw a circle
 }
}Like this...

This kind of class is
called a blob or god

class. It’s trying to do too
much in one place.

It uses a type code and a bunch
of if/else statements to decide
whether to draw, more, or scale
like a circle or a square.

Attack of the Blob!
By the way, type codes,

values used to control flow
using if/else or switch

statements, are a code smell.

They very frequently indicate
that one class is trying to take

on multiple responsibilities.

Single Responsibility Principle
● The Single Responsibility Principle

states that a class should only have a
single responsibility.

○ Natch.
○ This is probably the most important OO design

principle.
● Instead of one class that knows how to

draw any kind of shape, we should
design a different class for each
shape.

○ Each class has a single responsibility: draw
one kind of shape.

● This principle allows for a separation
of concerns among classes.

○ Each class is only concerned with doing one
thing and doing it well.

Shape

-position: Position

+move(Position p)
+scale(Float factor)
+draw(graphics g)
+contains(Position p)

Rectangle

-width: int
-height: int

+scale(float factor)
+draw(Graphics g)
+contains(Position p)

Circle

-radius: int
+scale(float factor)
+draw(Graphics g)
+contains(Position p)

Note that we use leverage abstraction and
polymorphism while adhering to single
responsibility principle.

Single Responsibility Principle

● A class should have a single, tightly
focused responsibility.

● This leads to smaller and simpler
classes, but also to more of them.

○ It is easier to understand the scope of a
change in a smaller class.

○ It is easier to manage concurrent
modifications of smaller classes.

○ Separate concerns go into separate classes.

● This also helps with unit testing!

BEWARE! Blobs can
grow slowly over time:

“I’m not sure where to put
this...I’ll just add it to the

‘system’ class…”

SOLID
S
O
L
I
D

ingle Responsibility Principle

pen-closed Principle

iskov Substitution Principle

nterface Segregation Principle

ependency Inversion Principle

Open/Closed Principle
“Software entities should be open for
extension, but closed to modification.”

● Software functionality should be extendable
without modifying the base functionality.

○ Mostly provided by features of the implementation
language such as interfaces or inheritance.

● Your design should consider appropriate use
of

○ Inheritance from abstract classes.
○ Implementation of interfaces.

● Dependency injection provides a mechanism
for extending functionality without
modification (more on this in a little
bit).

The Open/Closed
Principle deals with

extending and
protecting functionality.

SOLID
S
O
L
I
D

ingle Responsibility Principle

pen-closed Principle

iskov Substitution Principle

nterface Segregation Principle

ependency Inversion Principle

Liskov Substitution Principle
“Objects in a program should be replaceable
with instances of their subtypes without
altering the correctness of that program.”

● Pre-conditions specify what must be true
before a method call.

● Post-conditions specify what will be
true after a method call.

● Design by Contract is a programming
technique that requires the formal
definition of the pre- and
post-conditions and has language support
for it.

The Liskov Substitution
Principle constrains the

pre- and post-conditions of
operations.

Liskov Substitution Principle
● A subclass must not violate any of the

pre- and post-conditions guaranteed by
the superclass.

● Superclass clients count on the pre- and
post-conditions being true even when
polymorphism has the client interacting
with a subclass.

● To maintain a pre-condition, a subclass
must not narrow the pre-condition, i.e.
be a subset.

● To maintain a post-condition, a subclass
must not broaden the post-condition, i.e.
be a superset.

Any subclass of a class
should be able to
substitute for the

superclass without error.

SOLID
S
O
L
I
D

ingle Responsibility Principle

pen-closed Principle

iskov Substitution Principle

nterface Segregation Principle

ependency Inversion Principle

Dependency Inversion Principle
● Dependency Inversion says that a high

level module should not depend on a
low level model and vice-versa.

○ Both should depend on abstractions.
● This promotes looser coupling between

otherwise dependent entities.
● One common manifestation of this is

dependency injection.
○ The high level module does not instantiate

a low level module on which it depends.
○ An instance of the low level module is

created outside and “injected” into the
high level module through a constructor or
a mutator (“setter”).

○ This makes unit testing much easier.

Designing software systems that are easy
to test is a core aspect of software
engineering.

One way to do this is to make it possible to
test part of the system in isolation. By
introducing a layer of abstraction (i.e. an
interface) between two subsystems we
break the direct coupling between them.

This layer of abstraction enables the use of
a mock; an artificial implementation of an
interface that behaves in a predictable,
configurable way.

A mock of one subsystem can be used to
test another subsystem that depends on the
interface being mocked.

A Partial Design
OracleDB

-sock: Socket

+store(p: Player)
+retrieve(name: String): Player
+update(p: Player)

Player
- name: String
- score: int

+getName(): String
+ getScore(): int
+ addScore(points: int)

Game
- db: OracleDB
- players: List<Player>

+ addPlayer(name: String)
+play()
- scoreChanged(p: Player)

Consider this partial design for some
generic game that stores players in a
database.

In this case, the game specifically uses an
Oracle database to store and update
players as their score changes.

Let’s take a look at one possible
implementation...

Direct Dependency
package supergame;

public class Game {

 private OracleDB db;

 private List<Player> players;

 public Game(String host, int port) {
 db = new OracleDB(host, port);

 players = new ArrayList<>();

 }

 public void addPlayer(String name) {
 Player p = db.retrieve(name);
 players.add(p);
 }

 private void scoreChanged(Player p) {
 db.update(p);
 }
}

Direct Dependency
package supergame;

public class Game {

 private OracleDB db;

 private List<Player> players;

 public Game(String host, int port) {
 db = new OracleDB(host, port);

 players = new ArrayList<>();

 }

 public void addPlayer(String name) {
 Player p = db.retrieve(name);
 players.add(p);
 }

 private void scoreChanged(Player p) {
 db.update(p);
 }
}

The Game implementation to the left is directly dependent
on the concrete OracleDB. In fact, it creates an instance of
the class in its constructor.

Q: What implications does this have on the testability of the
Game class?

A: In order to test the class, it must be able to create an
instance of the OracleDB class. We can infer that this class
will attempt to connect to an Oracle database...

This means that we will need to stand up a real Oracle
database server in order to create a Game and test it
(otherwise, we assume that the connection will fail).

Furthermore, the only way to validate that the game is
storing, retrieving, and updating players correctly is to look
at the data in the database. This all makes testing the Game
class much harder.

A Layer of Abstraction
OracleDB

-sock: Socket

+store(p: Player)
+retrieve(name: String): Player
+update(p: Player)

Player
- name: String
- score: int

+getName(): String
+ getScore(): int
+ addScore(points: int)

Game
- db: Database
- players: List<Player>

+ addPlayer(name: String)
+play()
- scoreChanged(p: Player)

Database
<< interface >>

+store(p: Player)
+retrieve(name: String): Player
+update(p: Player)

Let’s modify the design by adding a layer of
abstraction between the Game and OracleDB
classes, i.e. an interface to represent a
generic database that can store players.

Now the high level module (Game) does not
directly depend on the low level module
(OracleDB). Instead, it depends on an
abstraction.

Now, let’s update the implementation to match
the new design...

Direct Dependency II
package supergame;

public class Game {

 private Database db;

 private List<Player> players;

 public Game(String host, int port) {
 db = new OracleDB(host, port);

 players = new ArrayList<>();

 }

 public void addPlayer(String name) {
 Player p = db.retrieve(name);
 players.add(p);
 }

 private void scoreChanged(Player p) {
 db.update(p);
 }
}

Direct Dependency II
package supergame;

public class Game {

 private Database db;

 private List<Player> players;

 public Game(String host, int port) {
 db = new OracleDB(host, port);

 players = new ArrayList<>();

 }

 public void addPlayer(String name) {
 Player p = db.retrieve(name);
 players.add(p);
 }

 private void scoreChanged(Player p) {
 db.update(p);
 }
}

A: We could still instantiate an OracleDB in the class, but
that would cause a direct dependency between Game (the
high level module) and OracleDB (the low level
module), which is exactly what we are trying to avoid.

(BTW, the UML doesn’t show this dependency, but it
should - by invoking the constructor on OracleDB, we have
created a static (compile time) dependency on that class)

First, we update the Game class so that the field is of the
generic type Database rather than the concrete type
OracleDB.

Q: But the field has to be assigned some value so that we
can use it to store, retrieve, and update players. How do
we initialize the field?

How about we use dependency injection? Instead of
creating the Database directly, we will pass it as an
argument to the constructor...

Program to the Interface
package supergame;

public class Game {

 private Database db;

 private List<Player> players;

 public Game(Database db) {
 this.db = db;

 players = new ArrayList<>();

 }

 public void addPlayer(String name) {
 Player p = db.retrieve(name);
 players.add(p);
 }

 private void scoreChanged(Player p) {
 db.update(p);
 }
}

Program to the Interface
package supergame;

public class Game {

 private Database db;

 private List<Player> players;

 public Game(Database db) {
 this.db = db;

 players = new ArrayList<>();

 }

 public void addPlayer(String name) {
 Player p = db.retrieve(name);
 players.add(p);
 }

 private void scoreChanged(Player p) {
 db.update(p);
 }
}

Let’s modify the constructor to add a Database parameter.
This way, an instance of an implementing class (e.g.
OracleDB) can be created outside the class and injected
in through the constructor.

Creating the Game class is not really much more difficult
than it was before. Instead creating one like this...

Game game = new Game("dbhost", 12357);

...we would create one like this...

Database db = new OracleDB("dbhost", 12357);
Game game = new Game(db);

Q: So what do we gain by doing this? How is the Game
class more testable than it was before?!

Mock Objects We have defined the behavior of a generic
database as an interface and we have broken the
direct dependency between the high level module
(Game) and the low level module (OracleDB).

This means that we are now free to create
alternative implementations of the Database and
pass them into the Game class instead of the
OracleDB.

We can easily create one such MockDB, inject it
into a Game object through the constructor, and
verify that the stored players are correct after
running tests.

Such artificial objects used only for testing are
called mocks, and we will talk about them more in
the unit testing module.

Including, for example, an artificial implementation
of our Database interface that doesn’t use a real
database, but just stores players in memory.

● Controller

● Creator

● Indirection

● Information Expert

● High Cohesion

● Low Coupling

● Polymorphism

● Protected Variations

● Pure Fabrication

GRASP
G
R
A
S
P

eneral

esponsibility

assignment

oftware

patterns and/or principles

The GRASP principles were
first described by Craig Larman

because acronyms are cool.

As with SOLID, we will
only discuss a few of

these principles today.

● Controller

● Creator

● Indirection

● Information Expert

● High Cohesion

● Low Coupling

● Polymorphism

● Protected Variations

● Pure Fabrication

GRASP
G
R
A
S
P

eneral

esponsibility

assignment

oftware

patterns and/or principles

GRASP Controller
“Assign responsibility to receive and
coordinate a system operation to a class
outside of the UI tier.”

● “Controller” is an overused term in software
design.

○ In GRASP, this is not the view “controller” which is
firmly in the View tier.

● In simple systems, it may be a single object
that coordinates all system operations.

● In more complex systems, it is often
multiple objects from different classes,
each of which handles a small set of closely
related operations.

Controller specifies a
separation of concerns
between the UI tier and

other system tiers.

Without a Controller

View Tier Model Tier

Entity 1

Value
Object 1

Route 1

Route 2

Route 3

Value
Object 2

Entity 2

Entity 3

In a system without a controller, the classes in
the View tier directly interact with classes in the
Model.

This usually manifests as lots of little interactions
such as constructor and method calls.

The result is that the View classes become more
complex, more tightly coupled with the model,
and less focus on UI tasks like receiving input
and rendering output.

Consequently, the UI is harder to replace - it
requires that complex application logic be
rewritten in each new UI (e.g. web, mobile,
desktop, etc.).

GRASP Controller

View Tier Model Tier

Entity 1

Value
Object 1

Route 1

Route 2

Route 3

Value
Object 2

Entity 2

Entity 3

A GRASP Controller is placed in the Controller
tier and provides services that encapsulate
application logic.

This often has the effect of replacing several
method calls with a single call to the service
being provided by the controller.

The View tier will probably still need to interact
with model classes directly, e.g. to get the name
from a player or to check the status of a game.

Controller Tier

Controller 1

Controller 2

These interactions should be limited to what is
necessary for the UI to perform its core function:
receiving input from the client and rendering
output.

View
Tier

Controller
Tier

Model
Tier

Simple System

GRASP Controller
Vi

ew
 c

on
tro

lle
rs

 w
or

k
th

ro
ug

h
th

es
e

cl
as

se
s

S
om

e
M

od
el

Ti

er
 c

la
ss

S
om

e
A

pp
l.

Ti
er

 c
la

ss
Here is how GRASP Controllers
fit into a software architecture for

a simple system as well as a
software architecture for a more

complex system.

Complex System

View
Tier

Controller Tier

Model
Tier

Vi
ew

 c
on

tro
lle

rs
 w

or
k

th
ro

ug
h

th
es

e
cl

as
se

s

Operation Subsystem

Operation

Op1 Op2

Op3

● Controller

● Creator

● Indirection

● Information Expert

● High Cohesion

● Low Coupling

● Polymorphism

● Protected Variations

● Pure Fabrication

GRASP
G
R
A
S
P

eneral

esponsibility

assignment

oftware

patterns and/or principles

Holdin’ Data

public class Account {
 private double balance;

 public void deposit(double amt) {
 balance += amt;
 }

 public void withdraw(double amt) {
 balance -= amt;
 }

 public double getBalance() {
 return balance;
 }
}

public class Customer {
 private String name;
 private int accountNumber;
 private Set<Account> accounts;

 public Set<Account> getAccounts() {
 return accounts;
 }
}

Consider the following classes that partially
implement a banking application...

The product owner has requested a new feature in
the system that can calculate the total account
balance for a customer.

Should we create a new class to handle the new
responsibility?

Holdin’ Data
public class Customer {
 private String name;
 private int accountNumber;
 private Set<Account> accounts;

 public Set<Account> getAccounts() {
 return accounts;
 }
}

public class BalanceInquiry {
 public double getTotalBalance(Customer c) {
 double total = 0;

 for(Account account : c.getAccounts()) {
 total += account.getBalance();
 }

 return total;
 }
}

The customer is holding all of the
account information, but balance
inquiry calculates the balance.

Does this make any sense?

No. It does not. Customer is
simply a data holder and the

behaviors that need that data are
in a separate class!

Information Expert
● If a new method has to be added to some

class in the system, how do we decide
where to add it?

● Information Expert states that
“behaviors follow data.”

○ Assign the responsibility to the class that has
the information needed to fulfill the
responsibility.

● The first place to consider placing code
that uses, processes, or modifies
attribute data is the class that holds
the attributes.

Classes should not be “data
holders” that contain attributes
but not the methods that use

those attributes.

Information Expert
public class Customer {
 private String name;
 private int accountNumber;
 private Set<Account> accounts;

 public Set<Account> getAccounts() {
 return accounts;
 }

 public double getTotalBalance() {
 double total = 0;

 for(Account acct : accounts) {
 total += acct.getBalance();
 }

 return total;
 }
}

The customer is the
information expert. It contains

all of the necessary data to
calculate a total balance.

When deciding where to add
the new get total balance

feature, we should use the
behaviors follow data principle.

● Controller

● Creator

● Indirection

● Information Expert

● High Cohesion

● Low Coupling

● Polymorphism

● Protected Variations

● Pure Fabrication

GRASP
G
R
A
S
P

eneral

esponsibility

assignment

oftware

patterns and/or principles

High Cohesion
High cohesion is closely

related to the single
responsibility principle.

Classes that have a
single responsibility also

tend to be cohesive.

● High Cohesion aims for focused,
understandable, and manageable
classes.

○ Responsibilities should be assigned so that
the cohesion of individual classes remains
high.

● High cohesion leads to smaller
classes with more narrowly defined
responsibilities.

● This design goal should have a higher
priority than most other design
goals.

○ Yes, sometimes design principles are in
competition with each other, in which cases,
we choose the higher priority principle.

● Controller

● Creator

● Indirection

● Information Expert

● High Cohesion

● Low Coupling

● Polymorphism

● Protected Variations

● Pure Fabrication

GRASP
G
R
A
S
P

eneral

esponsibility

assignment

oftware

patterns and/or principles

Low Coupling
● Low coupling attempts to minimize the

impact of changes to a system.
○ Assign responsibilities to a class so that

unnecessary coupling remains low.
○ Note the keyword “unnecessary;” coupling is

needed in the system.
● Resist lowering coupling simply to

reduce the number of relationships.
○ A design with more relationships is often

better than a design with fewer.
○ You need to sometimes balance competing design

principles against each other.
○ Beginning designers often want to prioritize

low coupling. This usually results in fewer,
larger, less cohesive classes with multiple
responsibilities.

DaBlob

-all: int
-the: String
-stuff: double
-you: int
-will: int
-ever: String
-need: List

+all()
+the()
+things()
+you()
+can()
+do()

The ultimate form of low coupling is
no coupling: one big class that does
everything.

It is hopefully obvious at this point that
this is not a good design choice.

High Cohesion vs. Low Coupling

● Low Coupling states that we should try
to minimize the relationships, and thus
dependencies between classes.

○ This sometimes results in a system with
fewer, larger classes.

● High cohesion and low coupling are often
in competition with each other.

○ High cohesion means more and smaller
classes.

○ More classes means more relationships
and/or dependencies.

● In general, we prefer high cohesion over
low coupling.

High cohesion and single
responsibility are generally more

important than low coupling.
Do not be afraid to
require a few more

relationships to improve
cohesion.

● Controller

● Creator

● Indirection

● Information Expert

● High Cohesion

● Low Coupling

● Polymorphism

● Protected Variations

● Pure Fabrication

GRASP
G
R
A
S
P

eneral

esponsibility

assignment

oftware

patterns and/or principles

Polymorphism
“Assign responsibility for related
behavior that varies by class by using
polymorphic behavior.”

● Polymorphism is a primary
object-oriented concept and should be
used whenever possible.

● There are bad code smells that
indicate that polymorphism is not
being used effectively.

○ A conditional that selects behavior based on
a “type” attribute (numeric code, enum).

○ Use of instanceof or similar language
constructs to select operations to perform.

Polymorphism creates a
hierarchy when related

behavior varies by class.

● Controller

● Creator

● Indirection

● Information Expert

● High Cohesion

● Low Coupling

● Polymorphism

● Protected Variations

● Pure Fabrication

GRASP
G
R
A
S
P

eneral

esponsibility

assignment

oftware

patterns and/or principles

Pure Fabrication
“Assign a cohesive set of responsibilities to
a non-domain entity in order to support high
cohesion and low coupling.”

● Your design should be primarily driven by
the problem domain.

○ Classes should be assigned names, attributes, and
methods that draw from the domain language.

● However, to maintain a cohesive design,
you may need to create classes that are
not domain entities.

● In the GRASP controller example, the
Operation Subsystem was a pure
fabrication.

Pure Fabrication is
sometimes needed to
balance other design

principles.

public class Waiter {
 private double payments = 0;

 public void serve(Diner diner) {
 diner.eat();

 Wallet wallet = diner.getWallet();

 payments += wallet.deduct(100.0);
 }
}

Talking to Strangers Waiter

-payments: double

+serve(diner:Diner)

Diner

-myWallet: Wallet

+eat()
+getWallet(): Wallet

Wallet

-double: totalMoney

+deduct(amount:double)
+getTotalMoney():double

We are designing a simple system to simulate
diners at a restaurant. The Wallet class is
used to pay for dinner at the end of a meal.

The Diner class represents customers at the
restaurant. Diners have a Wallet that they
use to pay for their meals, and thus the Diner
class is coupled with the Wallet class.

The Waiter class represents an employee
serving a meal to a Diner, and thus is
necessarily coupled with the Diner.

Q: At the end of the meal, the Waiter must
obtain payment for the meal. Given the current
system design, how would this work?

The waiter needs to ask the
diner for their wallet. This

introduces some additional
coupling and makes for an

awkward conversation.

Only Talk to Friends Waiter

-payments: double

+serve(diner:Diner)

Diner

-myWallet: Wallet

+eat()
+getWallet(): Wallet

Wallet

-double: totalMoney

+deduct(amount:double)
+getTotalMoney():double

Q: Does it make sense for Waiter to ask the
Diner to turn over his (private) Wallet? Or to
depend on Wallet at all? How does this
usually work in the real world?

A: The Waiter asks the Diner for money to
pay for the meal. The Diner removes the
money from the Wallet and gives it to the
Waiter. The Waiter never touches the
Wallet.

public class Waiter {
 private double payments = 0;

 public void serve(Diner diner) {
 diner.eat();

 payments += diner.getPayment();
 }
}

This change results in lower
coupling, simpler code, and
better encapsulation of the

diner’s wallet. A win-win-win.

Q: Can we fix the system to work that way and
eliminate coupling while also protecting
access to the Wallet?

A: Yes! By adding a method to Diner that
allows the Waiter to ask for payment without
requesting the Wallet.

Diner

-myWallet: Wallet

+eat()
+getPayment(): double

The Law of Demeter
● The Law of Demeter addresses unintended

coupling within a software system.
● Limit the range of classes that a class

talks to.
○ Each class only talks to its friends; don’t talk to

strangers.
○ Each class only talks to its immediate friends;

don’t talk to friends of friends.
○ Chained access exposes each interface (i.e. the

Wallet is exposed to the Waiter)!
● If a class needs to talk to something “far

away”, do not chain method calls together.
○ Get support from your friends, e.g. getPayment()
○ Get a new friend; establish a direct relationship.

One class should not
“reach through” another
class to get something

that it needs.

Design Principles
There are some key object-oriented “first
principles” that will be stressed in SWEN 262:
● Increase cohesion where possible
● Decrease coupling where possible
● Behaviors follow data (Information Expert)
● Prefer type (interface) inheritance over class

(implementation) inheritance.
○ Program to the interface, not the implementation

● Prefer composition to inheritance
○ “has-a” relationships rather than “is-a”

relationships
● Use delegation to “simulate” runtime

inheritance
● Law of Demeter: “Only talk to your friends.”

Software design rarely
starts with first principles,

but the designer should be
able to explain the

strengths/weaknesses of a
design using them.

Design Principles
There are many more object-oriented design concepts:

● Abstraction
○ Provide well-defined, conceptual boundaries that focus on the outside view of an

object and so serves to separate an object’s essential behavior from its

implementation.

● Principle of Least Commitment
○ The interface of an object provides its essential behavior, and nothing more.

● Principle of Least Astonishment
○ An abstraction captures the entire behavior of an object and offers no surprises or side

effects that go beyond the scope of the abstraction.

● Open-Closed Principle (OCP)
○ Software entities (classes, modules, etc.) should be open for extension, but closed for

modification.

○ We should design modules that never need to change.

○ To extend the behavior of a system, we add new code. We do not modify old code.

These are examples of the
principles that you should
mention throughout your

design documentation, but
certainly not an exhaustive

list!

