SWEN 262

Engineering of Software Subsystems

Anti-Patterns



References

An anti pattern is a common
response to a recurring
problem that is usually
ineffective and risks being
highly counterproductive.

Anti Patterns: Refactoring
Software, Architectures., and

Projects in Crisis

o Brown, Malveau, McCormick III, &
Mowbray
o John Wiley & Sons, 1998

Software Anti-Patterns Cheat
Sheet

Anti

Patterns

Refactoring Software, Architectures,
and Projects in Crisis

William J. Brown Raphael C. Malveaﬁ
Hays W.“Skip” McCormicklll Thomas J. Mowbray



https://www.amazon.com/AntiPatterns-Refactoring-Software-Architectures-Projects-dp-B000N7CA62/dp/B000N7CA62/ref=mt_hardcover?_encoding=UTF8&me=&qid=1577636587
https://www.amazon.com/AntiPatterns-Refactoring-Software-Architectures-Projects-dp-B000N7CA62/dp/B000N7CA62/ref=mt_hardcover?_encoding=UTF8&me=&qid=1577636587
https://www.amazon.com/AntiPatterns-Refactoring-Software-Architectures-Projects-dp-B000N7CA62/dp/B000N7CA62/ref=mt_hardcover?_encoding=UTF8&me=&qid=1577636587
https://medium.com/@agrawall.lokesh/antipatterns-cheat-sheet-bcf820892e17
https://medium.com/@agrawall.lokesh/antipatterns-cheat-sheet-bcf820892e17

Anti Patterns

A pattern of practice that 1s
commonly found 1in use.

(@)

When practiced, anti patterns often result
in negative consequences.

A software engineer must develop and
implement strategies to repair and
remove anti patterns when they are
encountered.

(@)

(@)
(@)
(@)

Solve through safely refactoring the code.
Work incrementally.

There are many alternatives to consider.
Beware of the cure being worse than the
disease.

It is worth remembering that
refactoring takes time (and
money) and risks breaking
code that works.

Keep this in mind when
considering removing an
antipattern.




The Blob

e Anecdotal Evidence:
o Classes with names like “System,”
“Manager,” or “Controller.”
o Lots of little data classes.

o UML class diagram that is larger than

all of the other classes.

e Possible Causes:
o “Just put i1t in main.”
o Information Expert taken to the

extreme.
o No Pure Fabrication.

e Problems:

Too complex to test.
No hope for reuse.
Low cohesion.

High coupling.

0O O O O

THE BLOB
ka;4.Thelﬂhuudkgﬁ@(hnlCﬁum'Tbe
| Kitchen Sink ’
Like the blob in the movie, starts out small

and grows over tj “Thi
me. “This class is ¢
Ofour system.”’ he heal"t

If foupd: Categorize related attributes and
Opcrations, extract class. Apply

Information expert to data classes.




Copy-and-Paste Programming

e Anecdotal Evidence:

o “I thought you already fixed this
bug?”

e Possible Causes:

o People unfamiliar with tools or
technology copy and modify a working
example.

o Laziness/time pressure.

Low coupling and/or Law of Demeter
taken to the extreme.

e Problems:

Code duplication (DRY!).

Same bugs occur multiple times.

Information expert broken.

Low cohesion.

Higher maintenance costs.

ure fabrication to cre

implementaﬁon. Replace

ﬂwﬁmdcﬂm.

O 0 O 0O O

duplication W




Lava Flow

e Anecdotal Evidence:
o IDE flags unused code.
o No one is sure what a method or class
does, but is afraid to remove 1it.
o Large blocks of commented code.

e Possible Causes:

o Lack of confidence in refactored
implementations (old code kept “just
in case”).

o Change in development team members.

o Research code moved into production.

A.K.A. Dead Code

Code, like lava, is fluid when it starts life but
becomes hard and immovable later.

o Time.

e Problems: Hﬁmmt“%&dmmdaﬁ%bn%ﬁ&mml
o Classes with no relationships. slowly remove dead code. Rerun tests to
o Code glut/increased lines of code. Hmkemueﬂmtnmhﬁgisbnmgnjwowng
o Unused methods with duplicate forward, safely refactor code (tests).

behavior.




Poltergeists

e Anecdotal Evidence:
o Transient associations.
o Short-lived, stateless classes.
o Classes created to invoke methods 1in
other classes, then go out of scope.

e Possible Causes: |

o Using 00 when i1t 1s not appropriate. \
o Poorly implemented Command Pattern. THEP

LTEGEIST

o Poorly implemented MVC.

e Problems: “I'm not exactly sure what this claS.s di)es,
° Higher coupling. butﬁsunzﬂwnwimpoﬂanL.Tnnm@%t”
o Lots of little, extra classes. ;mymmﬁmmtmngo‘%umpﬂ1me”@"

If found: Remove poltergeists by moving
controlling actions to related classes.




The Golden Hammer

e Anecdotal Evidence:

o “Our database drives our
architecture.”

o “The entire program is implemented

with Excel macros!”

o Identical tools used for conceptually

different problems.
e Possible Causes:

o “The customer asked us to use

but I already know Python,

.net,
SO 2

o Lack of training, outdated skills.

o No diversity of background.

e Problems:

(@)
(@)
(@)
(@)

Tools determine the architecture.
Non-functional requirements ignored.
Customer/Product Owner ignored.

Poor performance & scalability.

When the only
everything start

If found: Diverst

professional
technologies. Use ope

architectures.

AK.A. Old Yeller
Sa hammera

s to look like a nail.

fy team skills. Commit to
Explore new
n systems and

tool you have 1

development.




Functional Decomposition

e Anecdotal Evidence:

o Classes have names that sound like
methods, e.g. CalculatelInterest,
DisplayTable.

o Classes with a single method.

e Possible Causes:
o High cohesion taken to the extreme.
o Lack of object oriented experience.
e Problems:
o No hope of reuse.

o Class explosion.
o High coupling.




