
SWEN 262
Engineering of Software Subsystems

Anti-Patterns



References
● An anti pattern is a common 

response to a recurring 
problem that is usually 
ineffective and risks being 
highly counterproductive.

● Anti Patterns: Refactoring 
Software, Architectures, and 
Projects in Crisis

○ Brown, Malveau, McCormick III, & 
Mowbray

○ John Wiley & Sons, 1998
● Software Anti-Patterns Cheat 

Sheet

https://www.amazon.com/AntiPatterns-Refactoring-Software-Architectures-Projects-dp-B000N7CA62/dp/B000N7CA62/ref=mt_hardcover?_encoding=UTF8&me=&qid=1577636587
https://www.amazon.com/AntiPatterns-Refactoring-Software-Architectures-Projects-dp-B000N7CA62/dp/B000N7CA62/ref=mt_hardcover?_encoding=UTF8&me=&qid=1577636587
https://www.amazon.com/AntiPatterns-Refactoring-Software-Architectures-Projects-dp-B000N7CA62/dp/B000N7CA62/ref=mt_hardcover?_encoding=UTF8&me=&qid=1577636587
https://medium.com/@agrawall.lokesh/antipatterns-cheat-sheet-bcf820892e17
https://medium.com/@agrawall.lokesh/antipatterns-cheat-sheet-bcf820892e17


Anti Patterns
● A pattern of practice that is 

commonly found in use.
○ When practiced, anti patterns often result 

in negative consequences.
● A software engineer must develop and 

implement strategies to repair and 
remove anti patterns when they are 
encountered.
○ Solve through safely refactoring the code.
○ Work incrementally.
○ There are many alternatives to consider.
○ Beware of the cure being worse than the 

disease.

It is worth remembering that 
refactoring takes time (and 
money) and risks breaking 
code that works.

Keep this in mind when 
considering removing an 
antipattern.



The Blob
● Anecdotal Evidence:

○ Classes with names like “System,” 
“Manager,” or “Controller.”

○ Lots of little data classes.
○ UML class diagram that is larger than 

all of the other classes.
● Possible Causes:

○ “Just put it in main.”
○ Information Expert taken to the 

extreme.
○ No Pure Fabrication.

● Problems:
○ Too complex to test.
○ No hope for reuse.
○ Low cohesion.
○ High coupling.

WANTED

THE BLOBA.K.A. The Winnebago, God Class, The Kitchen SinkLike the blob in the movie, starts out small and grows over time. “This class is the heart of our system.”
If found: Categorize related attributes and operations, extract class. Apply information expert to data classes. 



Copy-and-Paste Programming
● Anecdotal Evidence:

○ “I thought you already fixed this 
bug?”

● Possible Causes:
○ People unfamiliar with tools or 

technology copy and modify a working 
example.

○ Laziness/time pressure.
○ Low coupling and/or Law of Demeter 

taken to the extreme.
● Problems:

○ Code duplication (DRY!).
○ Same bugs occur multiple times.
○ Information expert broken.
○ Low cohesion.
○ Higher maintenance costs.

WANTED

COPY-AND-PASTE 

PROGRAMMING

“Man, you guys work fast! Over 400,000 

lines of code written in three weeks!”

If found: Apply information expert and 

pure fabrication to create a single, standard 

implementation. Replace duplication with 

method calls.



Lava Flow
● Anecdotal Evidence:

○ IDE flags unused code.
○ No one is sure what a method or class 

does, but is afraid to remove it.
○ Large blocks of commented code.

● Possible Causes:
○ Lack of confidence in refactored 

implementations (old code kept “just 
in case”).

○ Change in development team members.
○ Research code moved into production.
○ Time.

● Problems:
○ Classes with no relationships.
○ Code glut/increased lines of code.
○ Unused methods with duplicate 

behavior.

WANTED

LAVA FLOW
A.K.A. Dead Code

Code, like lava, is fluid when it starts life but becomes hard and immovable later.
If found: Write characterization tests, then slowly remove dead code. Rerun tests to make sure that nothing is broken. Moving forward, safely refactor code (tests).



Poltergeists
● Anecdotal Evidence:

○ Transient associations.
○ Short-lived, stateless classes.
○ Classes created to invoke methods in 

other classes, then go out of scope.
● Possible Causes:

○ Using OO when it is not appropriate.
○ Poorly implemented Command Pattern.
○ Poorly implemented MVC.

● Problems:
○ Higher coupling.
○ Lots of little, extra classes.

WANTED

THE POLTERGEIST
“I’m not exactly sure what this class does, 

but it sure seems important.” Transient 

associations that go “bump in the night.”

If found: Remove poltergeists by moving 

controlling actions to related classes.



The Golden Hammer
● Anecdotal Evidence:

○ “Our database drives our 
architecture.”

○ “The entire program is implemented 
with Excel macros!”

○ Identical tools used for conceptually 
different problems.

● Possible Causes:
○ “The customer asked us to use .net, 

but I already know Python, so...”
○ Lack of training, outdated skills.
○ No diversity of background.

● Problems:
○ Tools determine the architecture.
○ Non-functional requirements ignored.
○ Customer/Product Owner ignored.
○ Poor performance & scalability.

WANTED

THE GOLDEN HAMMER
A.K.A. Old Yeller

When the only tool you have is a hammer, 

everything starts to look like a nail.

If found: Diversify team skills. Commit to 

professional development. Explore new 

technologies. Use open systems and 

architectures.



Functional Decomposition

● Anecdotal Evidence:
○ Classes have names that sound like 

methods, e.g. CalculateInterest, 
DisplayTable.

○ Classes with a single method.
● Possible Causes:

○ High cohesion taken to the extreme.
○ Lack of object oriented experience.

● Problems:
○ No hope of reuse.
○ Class explosion.
○ High coupling.

WANTED

FUNCTIONAL DECOMPOSITIONA.K.A. No OO
“Object oriented programming is easy! You just put everything in a class!”

If found: Perform domain analysis, use domain driven design. Apply information expert. Combine classes with related state/behavior. Use static functions when appropriate.


