
SWEN 262
Engineering of Software

Subsystems

General Course Information

Logistics
● During each week of the semester, SWEN 262 will

meet 2-3 times for 50-75 minutes each time.
● Each class session will include some combination of

the following:
○ A brief lecture covering new material (usually ~15 minutes)
○ An in-class assignment (individual or small team)
○ A discussion about a previous assignment
○ Project time
○ Presentations

● Many assignments are due at the start of class so
that we can have a class discussion.

○ Please pay attention to due dates and times.
As much as possible, class time
will be devoted to problem solving
as individuals or on teams of 2-6
students.

Grades Grade Percentage Range

A at least a 93

A- at least a 90

B+ at least an 87

B at least an 83

B- at least an 80

C+ at least a 77

C at least a 73

C- at least a 70

D at least a 60

F less than 60

● A minimum grade of C- is required for Software
Engineering majors to qualify for coop.
○ SE majors are also required to take the SE Co-op

Seminar (SWEN-099) before co-op.
● Your instructor may consider rounding grades up.

○ For example a 79.6% may qualify a student for a
B-.

○ This is up to the discretion of the individual
instructor.

○ In general, grades will not be rounded up more
than half a percentage point.

● Students that regularly attend class, respond to
feedback, visit their instructor during office hours, and
generally seem to try are more likely to benefit.

● Activities - 10%
● Mini-Designs - 10%
● Midterm Exam 1 - 10%
● Midterm Exam 2 - 10%
● Final Exam - 20%
● Design Project R1 - 17.5%
● Design Project R2 - 17.5%
● Refactoring Project - 5%

Grading
Individual Grades (60%)

Team Grades (40%)

Note that individual grades for team projects may
be adjusted based on the instructor’s feedback or
feedback from other members of the team.

Class Activities
● Most class activities will require that you download a

document, answer some questions, and upload your
answers to a drop box on MyCourses.

● Each will be graded on a scale of 0-5.
○ 0 for no submission.
○ 1,2,3,4 (grader’s discretion) based on partial/incorrect solutions.
○ 5 for a correct solution.

● This means that it will be hard to get a good class
participation grade simply by submitting anything at all at
the last minute.

Mmm...tastes like
learning!

Individual Learning
This course is designed to give the learner every
opportunity to, well, learn…

● In class activities (short answer or problem solving).
● Hands on mini-design exercises (refactorings).
● Team Projects - Apply your knowledge to large design problems.

It will also give your instructor a lot of data about how
much you have learned and how well you can apply your
knowledge.
● Part of the instructor’s job is to evaluate your

preparedness for a co-op.
○ Critical thinking.
○ Communication and writing skills.
○ Code mastery.
○ Ability to work on a team.
○ Design and engineering skill.

Instructors can (and have)
recommended that students that
technically pass the course are
not considered “ready” for co-op.

Please don’t consider this class
the last “check box” you need to
get out into the big wide world.

Instead, consider this a real
opportunity to learn valuable
skills for your career.

So, What Can I do to Get a Better Grade?
● The work.

Seriously, we get asked this question every
semester, in every class, by at least one or
two students, usually around week 12.

The most straightforward way to get a good
grade in this class is to do the
assignments, and respond to feedback*.

Sometimes a small amount of extra credit
(up to 2%) is offered near the end of the
semester, but that is not guaranteed.

* “respond to feedback” means that, if you are given
feedback about something you should do differently,
you should actually...do it differently the next time.

Course Overview

Course Overview
● This course discusses standard patterns of

structure and interaction between classes: Design
Patterns.

● How to apply them to your application.
○ Deal with subsystems at the higher level of abstraction

provided by the patterns.
○ No longer thinking strictly in code, or at the level of individual

classes and objects.
● What to do when a pattern does not fit exactly.

○ Patterns are not code.
○ Patterns are recipes that can be followed to solve a problem

that has been solved before.
○ Sometimes the recipe needs to be slightly modified to fit a

specific problem.
○ Learn to evaluate the options and analyze the trade-offs.

This is a good sign that you
may have picked the wrong
pattern.

Be wary of modifying a
pattern too much.

Beware the Golden Hammer...

Course Overview
At the code level, you are already familiar with some standard patterns.

for(int i=0; i<array.length; i++) {
 Object element = array[i];
 // do whatever you need to do with element i
}

for(Object element: array) {
 // do whatever you need to do with the element
}

Q: How would you walk
through an array in Java?

Alternatively...

Course Overview
The level of discussion in this course is small
subsystems of 3 to 10 classes.

● Higher than what you may have done
before.

○ Not specific data structures
○ Not algorithmic approaches
○ Not nose-to-the-screen coding when all you think

about is the current statement.

● But also lower than whole architecture
systems or frameworks.

○ Not financial systems
○ Not air-traffic control
○ Not J2EE
○ Not Django or Spring
○ Not a view from 300 miles up.

Course Overview

This course uses a problem-based learning (PBL)
methodology.
● Solving problems motivates your learning.
● Planned lectures are minimal (for the most part).
● This is better because:

○ The learner (you) actively engages in the material. You
do it rather than listen to me explain how it is done.

○ Deeper learning occurs when the learner motivates
the need for knowledge.

○ This more closely resembles a true career situation.

Problem-Based Learning provides you
with the tools and resources you need
to solve fuzzy problems without giving
you the answers.

In many cases there is (many) more
than one solution to a problem!

Course Overview
The instructor can help you overcome perceived PBL
negatives.
● Thinking is hard.
● Making mistakes is discouraging.
● This is not a passive sport anymore.

○ You need to identify needed knowledge.
○ You need to initiate requests for additional guidance.

● “I don’t know enough to know what I don’t know.”
● Not getting money’s worth from the instructor.

Course Overview
Success in this course requires a different strategy
than other courses.
● Keep work moving forward.

○ You are given lots of time to complete each
assignment. Waiting until the last minute will affect
your success.

○ In other news, the sky is blue.
● Seek feedback every class.

○ Your instructor will attempt to guide you to make your
work less worse.

● Bring up struggles for discussion.
○ I can help you get through the rough patches.
○ Other students not nearly as brave as you are will

benefit from your bravery.

Course Overview
To move to the next level of design, you must
know the principles that underlie “good” designs.
● All engineering is based on principles that

have been learned over time.
○ Discovered rather than invented through the

application of competent software engineering.
○ Used in many applications.
○ Sometimes through failure!

Course Overview
● Most problems do not have a single, perfect

solution that everyone will agree on.
○ The larger the problem, the less likely that there is a single

solution to solve it.

● Throughout this semester, students will create
different designs to solve the same problem.

○ Many will be terrible at first.
○ But many may also solve the same problem in different,

equally valid ways.

● Design Patterns are about:
○ Recognizing a category of problem that has been solved

before and learning to apply the pattern(s) to solve this new
iteration.

○ Learning to speak a language that helps communicate your
ideas quickly and efficiently.

Words to Live Design By
● Use language of requirements to justify

patterns (clues/breadcrumbs)
○ You will (hopefully) learn to recognize certain key

phrases as identifying a requirement that is
suitable for one (or maybe more!) patterns.

● Use design principles to justify design
choices
○ Whenever you make decisions about competing

design choices, make sure that those decisions
are based firmly in design principles.

○ Often what “feels right” is right but you need to
determine why and be able to explain it.

Functional requirement 4.a states that
“the user must be notified when an bid

has been made on their sale item.”
We chose the Observer pattern here
because its intent is to automatically

notify a dependent when the status of
its subject changes.

While the Mediator pattern may
sometimes appear to be a blob, it in
fact reduces the overall coupling in

the system by replacing
many-to-many coupling with

one-to-many. In addition, the overall
cohesion of the system is improved by

moving the control logic out of the
colleagues and into the mediator.

Professional Responsibility
● Lastly, your role in this course is to

demonstrate that you are prepared to work
and act like a professional software
engineer.

○ Show up on time.
○ Stay until the end.
○ Meet your commitments to your instructor, your

team, and yourself.
○ Notify your instructor and especially your team if

you can’t meet your obligations for any reason
(illness, emergency, etc.).

● Your treatment of your instructor and your
peers may affect your grade!

It is ultimately your responsibility to
make sure that you complete your
work and submit it on time.

It is course policy not to extend
submission deadlines except for
extenuating circumstances.

Note that “I forgot” is not an
extenuating circumstance.

Assignment submissions are never
accepted through email and will be
deleted on sight.

