
SWEN 262

Engineering of Software Subsystems

The Laws of Software Evolution
● Beginning in 1974, Manny Lehman and Laszlo

Belady began documenting the laws of software
evolution.

● There are 8 laws in total, but the first two are as
follows:

○ Continuing Change - Systems must be continually

adapted else they become progressively less

satisfactory.

○ Increasing Complexity - As a system evolves, its

complexity increases unless work is done to maintain or

reduce it.

In other words, over time any software
system must change to add new
improvements (i.e. features) or it will
become out of date and/or unusable.

At the same time, introducing change
to a software system also makes it
more complex.

The more complex software is, the
harder it is to understand and maintain.

That is unless the engineers make a
specific effort to maintain or reduce
complexity in some way...

https://en.wikipedia.org/wiki/Manny_Lehman_(computer_scientist)
https://en.wikipedia.org/wiki/L%C3%A1szl%C3%B3_B%C3%A9l%C3%A1dy
https://en.wikipedia.org/wiki/L%C3%A1szl%C3%B3_B%C3%A9l%C3%A1dy
https://en.wikipedia.org/wiki/Lehman%27s_laws_of_software_evolution
https://en.wikipedia.org/wiki/Lehman%27s_laws_of_software_evolution

Refactoring

Refactoring is taking software, which
through natural processes has lost its
original clean structure...

Refactoring
...and restoring a clean structure.

The Fowler Book
● The definitive guide to refactoring is a book by

Martin Fowler.
● Refactoring: Improving the Design of Existing Code

○ Martin Fowler, Addison-Wesley, 1999

● The book contains more than 70 recipes for
refactoring.

○ Each “recipe” contains a set of refactoring steps that

should be completed in order to implement a specific

refactoring.

○ In this way, Refactoring is a sort of cookbook for cleaning

up legacy code. Fowler’s refactoring.com site has a
catalog of refactorings as well as other
useful resources.

http://www.martinfowler.com/
http://refactoring.com/
http://refactoring.com/catalog/

Refactoring
● Refactoring should only change the internal

structure and not the observable behavior of a
system.

● This bears repeating: refactoring should change
the internal structure and not the observable
behavior of a system.

○ This includes the user interface!

● Remember: adding new features to a system
increases its complexity and makes the system
more difficult to understand and maintain.

● The goal of refactoring is to reduce complexity.

Refactoring (noun): a change made to
the internal structure of software to
make it easier to understand and
cheaper to modify without changing its
observable behavior.

Design Entropy
● The design entropy of a software system tends to

increase over time.
○ entropy (noun): a process of degradation or running

down to a trend to disorder.

○ also: chaos, disorganization, randomness.

● As the code is modified (e.g. to add new features,
fix bugs, etc.) it moves farther and farther away
from its original design.

Design

Design

D
es

ig
n

En
tr

op
y

Time

Design

If you no longer can see the design,
how can you stay consistent to it?

What if the original design is no
longer adequate?

http://www.merriam-webster.com/dictionary/entropy

Design Entropy
● The entropy will increase because of the

typical development death spiral.
○ Good design up front.

○ Local modifications alter the framework.

■ Small changes add up.

○ Short-term goals win out over structure

maintenance.

■ Fix bugs.

■ Meet deadlines.

○ Engineering sinks into hacking.

■ Must...code...faster!

○ Integrity and structure fade (entropy).

No time for formal design,
Dr. Jones! We’ve got
deadlines to meet!

Refactoring
D

es
ig

n
En

tr
op

y

Time

When adding a new feature, you
arrive at a decision point.Decision Point

Option 1: Business as usual. Hack
the new feature into the system and
increase the entropy.

The system moves farther from the
original design, and you risk
breaking some of the other features
by introducing new bugs.

● A refactoring activity can remove some of that design randomness.

Refactoring
● A refactoring activity can remove some of that design randomness.

D
es

ig
n

En
tr

op
y

Time

Decision Point

Option 2: Refactor the existing code
to a design into which the new
feature will integrate more smoothly.

Note that the entropy in the system
decreases with the refactoring, but
the design has still changed from its
original structure!

It’s important to consider that
refactoring takes time. It is not free.
Features will take longer to deliver.

{
Time to refactor

This is why many engineers make
the excuse not to refactor...

If it ain’t broke...
● It can be difficult to counter the “If it ain’t

broke, don’t fix it!” mentality.
● Sure, the design may be:

○ Ugly.

○ Difficult to understand.

○ Difficult to maintain.

○ Difficult to modify.

○ Difficult to debug.

● But! It mostly works, and refactoring is
dangerous and takes time.

○ Significant modifications to the design pose a risk

that everything will break.

○ Time is money.

Refactoring
● But code that can’t be maintained,

debugged, or modified without serious risk
is broken.

IF IT IS

BROKE, GO

AHEAD

AND FIX IT.

● In general, refactoring...
○ Improves the quality of the product.

○ Pays today to ease work tomorrow.

○ May actually accelerate today’s work!

But time is money. How can
spending time today save time
later?

Good question! Let’s talk about
code debt...

Code Debt
Ward Cunningham used debt as a metaphor for software
development:

“Shipping first time code is a little like going into debt. A little
debt speeds development so long as it is paid back promptly.
Objects make the cost of this transaction tolerable.

“The danger occurs when the debt is not repaid. Every minute
spent on not-quite-right code counts as interest on that debt.

“Entire engineering organizations can be brought to a stand-still
under the load of an unconsolidated implementation,
object-oriented or otherwise.” But what does this mean?

https://en.wikipedia.org/wiki/Ward_Cunningham

Code Debt
● Taking shortcuts or risks during software

development accrue a small amount of debt.
○ Hacking new features into an existing design.

○ Skipping unit testing.

○ Writing a line of code!

● Eventually, interest must be paid on that debt in the
form of the time it takes to work around the
problems introduced by the shortcuts.

○ Fixing bugs.

○ Deciphering inscrutable code.

○ Difficulty in adding new features.

● Some organizations end up spending most or all of
their time paying interest on technical debt.

The system becomes so difficult to
maintain that the organization
spends all of its time fixing
problems rather than introducing
new features.

Refactoring
● Refactoring does not work well as an end task

because there is never any time to do it.
○ Will the customer pay for you to spend lots of time to produce

a product that has changed internally but where the

observable features have remained the same?

● Refactoring may be a continuous code improvement
activity if...

○ It will make adding a new feature easier.

○ It will make the code easier to debug.

○ It fills in a “design hole.”

○ It is done as a result of a code inspection.

○ If it simply makes the code easier to understand.

Time is money. But sometimes
spending a little money now saves
a lot of money later.

Code Inspections
● Code inspections have been found to be the most

effective technique for early defect detection.
○ Spreads design and implementation knowledge through the

team.

○ Helps more experienced engineers mentor less experienced

developers.

○ New eyes see things “old” eyes are not seeing.

○ Next time you can’t find a bug, inspect!

The ultimate form of code
inspection is pair programming.

One developer performs a
continuous code inspection as the
other developer codes.

Bus Number
● A development team’s bus number is the answer to

the following question: “How many team members
need to be hit by a bus before you lose critical
knowledge about part of the system?”

○ Obviously, the worst answer to the question is “one.”
○ If a single member of the team becomes unavailable, there is

no one else that could quickly and easily pick up where that
person left off.

● Code inspection, including pair programming, is a
mechanism for increasing your bus number.

○ This helps to avoid “siloing.”
○ This also helps the team work with more agility because any

team member can take any task, even if (or especially when)
the rest of the team is busy.

Team members don’t need to
actually be hit by a bus.

They could also go on vacation, be
stuck in training, or leave for
another job (for example).

Smells: When to Refactor
● There are many bad smells that get designed and

coded into software.

Not all smells are necessarily bad.

But they can be an indication of a
problem in the system.

A simple rule that applies to code
and diapers: if it stinks, change it.

● Duplicated code ● Primitive object avoidance

● Long methods ● Switch statements

● Long parameter lists ● Type codes

● Orthogonal purposes for a class ● Speculative generality

● Shotgun changes ● Middle man overuse

● Feature envy ● Data classes

● Data clumping ● Verbose comments

Duplicated Code
● Rule of three.

○ Do something in one place, that’s OK.

○ Do something in two places, hold your nose and go ahead.

○ Do something in three places… time to refactor.

● If the same code exists in two or more places, it may
cause problems.

○ A bug in one place is a bug in all of them.

○ Modifications made to one need to be made to the others.

○ Code is longer (this is a smell).

● In this case, the problem can be solved using the
extract method refactor. Some developers practice the rule

of two.

2

Extract Method: Refactoring Steps
● Create a new method.
● Copy the extracted code into the method.
● Look for local variables on which the extracted code

depends, and add them as parameters to the method.
● Replace the original code with a call to the method.

○ Be sure to pass in the required local variables as parameters.

This is an abbreviated version of
the actual refactoring steps from
the Fowler book.

See the Extract Method refactoring
on page 110 for full details.

Extract Method: Refactoring Steps
public class MyClass {

// somewhere in the code...

for(String name:listOfNames) {

 System.out.println(name);

}

// somewhere else in the code...

for(String name:listOfNames) {

 System.out.println(name);

}

}

Extract Method: Refactoring Steps
public class MyClass {

// somewhere in the code...

for(String name:listOfNames) {

 System.out.println(name);

}

// somewhere else in the code...

for(String name:listOfNames) {

 System.out.println(name);

}

}

Identify duplicate code that exists
in more than one place (usually 3,
but 2 is OK, too).

(obviously this is an overly simple
example, but you get the idea)

Extract Method: Refactoring Steps
public class MyClass {

// somewhere in the code...

for(String name:listOfNames) {

 System.out.println(name);

}

// somewhere else in the code...

for(String name:listOfNames) {

 System.out.println(name);

}

public void printNames() {

 }

}

Create a new method with a name
that captures the method’s intent.

Extract Method: Refactoring Steps
public class MyClass {

// somewhere in the code...

for(String name:listOfNames) {

 System.out.println(name);

}

// somewhere else in the code...

for(String name:listOfNames) {

 System.out.println(name);

}

public void printNames(List<String> listOfNames) {

 }

}

Look for local variables on which
the code depends...

...and add those variables as
parameters to the new method.

Extract Method: Refactoring Steps
public class MyClass {

// somewhere in the code...

for(String name:listOfNames) {

 System.out.println(name);

}

// somewhere else in the code...

for(String name:listOfNames) {

 System.out.println(name);

}

public void printNames(List<String> listOfNames) {

 for(String name:listOfNames) {

 System.out.println(name);

 }

 }

}

Copy and paste the original code
into the new method.

Extract Method: Refactoring Steps
public class MyClass {

// somewhere in the code...

printNames(listOfNames);

// somewhere else in the code...

printNames(listOfNames);

public void printNames(List<String> listOfNames) {

 for(String name:listOfNames) {

 System.out.println(name);

 }

 }

}

Finally, replace the original code
with a call to the new method.

Q: This is a very simple example.
What other variations might need
to be considered?

A: What about temporary
variables? What if the method
changes the value of some
variable used later?

(by the way, most modern IDEs include
built-in macros to handle common
refactorings like extract method).

Safely refactoring
● Refactoring is often dangerous.
● More than adding a simple feature, refactoring

involves changing the design of the system.
● Before refactoring, smart developers write

characterization tests.
● A characterization test is a unit test that verifies the

current functionality of existing software.
○ Unlike many unit tests, characterization tests are written

after the code is already working.

● Once the code is characterized with
characterization tests it should be safe to modify.

○ If the tests pass, great!
○ If the tests break, roll back the change!

Test Driven Development (TDD) states:
never modify a line of code before it is
under test.

This is true for legacy code that needs
to be refactored as well as new code.

If the legacy code is not yet under test,
it needs to be brought under test before
the refactoring can begin.

This means writing unit tests to
characterize the current functionality
(which is theoretically working as
intended).

Once the code is under test, the refactor
can begin and the tests run to make
sure the refactor didn’t break the code.

Refactoring Your Design
● This semester you will be asked to evaluate your

design from Release 1 of the Design Project and
complete at least one major refactoring.

○ Run a metric analysis of your code to identify hot spots

for a potential refactoring.

○ Apply at least one significant design pattern (any of the

GoF patterns is eligible) to a part of your R1 design that

doesn't currently make use of one.

○ Implement your refactored design as part of you Design

Project R2.

