@ chromium

A Case Study: Chromium Vulnerability History

Kayla Davis
Shayde Nofziger

Kayla Nussbaum

Kelly Trainor

Table of Contents

-

Table of Contents

Chapter 1: Domain and Historical Analysis

Product Overview
Description
Overview of findings

Product Assets

Example Attacks

Vulnerability History
CVE-2013-2879: Issue 252062 - An attacker can sign in a victim to his own account.
CVE-2012-5142: Issue 160803 - Crash in History Navigation
CVE-2014-3160: Issue 380885 - Cache-based SOP-Bypass for Images
CVE-2016-5133 Issue 613626 - Credential Phishing via Transparent Authenticating Proxy Vector

O o L1 UT DN W W INDNMNDN

9
Chapter 2: Design Analysis 10
Architecture Overview 10
Threat Model 13
Assets to Threat Model Tracing 15
Chapter 3: Code Inspection Assessment 18
Inspection Selection 18
Code Inspection Results 18
StyleElement.cpp 18
App_Window.cc 19
Encryptor.cc 21
Project-Specific Checklist 23
Domain Specific Concerns 23
Coding Mistakes 23
Design Concerns 24
Past Vulnerabilities 24
Availability Concerns 24
Inspection Summary 25

Chapter 1: Domain and Historical Analysis
|

Product Overview

Description

Chromium describes itself as an “open-source browser project that aims to build a safer, faster, and

more stable way for all Internet users to experience the web". Originating back in 2008, Chromium is

the base of several web browsers — most notably Google Chrome, but also many other browsers,

including Opera (version 15.0 or higher). Chromium is built as a base for browsers geared towards every

web user — from developers to the average web surfer. Since it is the base of Chrome, many people

use Chromium without even realizing it; as of September 2016, 58.75% of web users use Chrome. The

main business objective of Chrome, and by extension Chromium, is to continue to grow their market

share and maintain the title of most used browser.

The Chromium project is a large open-source product, consisting of over 14 million source lines of code

in 32 languages. It is maintained and constantly updated by its large developer community and releases
every 1-2 months. The Google Chrome primary development team relies on Chromium's large
development community for assistance in maintaining the code base and all of its features.
Volunteer-driven contributions are mainly in the form of testing and bug reporting. In the past year,

Chromium has averaged around 700 developers and 6,000 commits per month.

Chromium developers work hard at creating a well documented open source product. There are many

documents that help a user get started in developing, testing, reviewing, and committing their code. In

order for every user to commit good code, the project enforces a strict policy that every commit to the
master code branch must be reviewed and accepted by an owner prior to being integrated with the rest
of the system. Even though every commit needs to be reviewed by owners, many bugs and
vulnerabilities can sneak into the system. There’s evidence to show that the code review system doesn't

actually help mitigate vulnerabilities like one might think. In Chromium, files reviewed by more

developers are more likely to be vulnerable.

https://www.openhub.net/p/chrome
https://www.chromium.org/developers/calendar
https://www.chromium.org/developers/calendar
http://dl.acm.org/citation.cfm?doid=2661685.2661687
https://www.chromium.org/
http://gs.statcounter.com/#browser-ww-monthly-201609-201609-bar
https://www.openhub.net/p/chrome/analyses/latest/languages_summary
https://www.openhub.net/p/chrome/analyses/latest/languages_summary
https://www.chromium.org/
https://docs.google.com/presentation/d/1abnqM9j6zFodPHA38JG1061rG2iGj_GABxEDgZsdbJg/present?slide=id.i0
https://en.wikipedia.org/wiki/Chromium_(web_browser)#Active
http://dl.acm.org/citation.cfm?doid=2661685.2661687

Over the years, many vulnerabilities have been introduced into the system. However, Chromium has
still maintained a strong reputation in both its confidentiality with user data and the integrity of the

program altogether.

Overview of findings

As the capabilities of web browsers expand, it is important for projects like Chromium to continue to
protect against exploits and patch vulnerabilities soon after they are discovered. Even though the
project contribution process helps reduce bugs that could crawl into the system, vulnerabilities can still

be introduced. According to the issue tracker, there have been 1057 vulnerabilities marked as fixed in

the Chromium project, and this paper will discuss four of them. The analysis of the four vulnerabilities
below will cover the root cause of the vulnerability, how it was fixed, and recommended engineering

practices that could have prevented the vulnerability in the first place.

Product Assets

Chromium has many assets that could potentially be at risk to security attacks. The projectis a base for
many browsers so there is a substantial risk if an attacker were to compromise the system. One of
Chromium's biggest assets is the user data: user profile, user cookies, user preferences, and browser
history. It's important to keep these assets secure to maintain the user's trust especially since, most
users automatically trust their browsers. Most assume the only danger comes from emails and
malicious websites. Not protecting this asset could be detrimental to the project. Another one of
Chromium'’s main assets is the ability to add extensions. The extensions are third party software and
while the Chromium team does not maintain the extensions, they are responsible for how they can
affect the system. This opens the door for third party software to affect the browser. When not properly
handled, extensions could be a potential risk to the system, since many of them access important
browser functionality. Allowing extensions these privileges can cause denial of service attacks, cross site
scripting, and they can even download malicious software onto a user’s machine. In the first

vulnerability analysis below, trusting a powerful extension caused a substantial security risk.

The Chromium project enables web applications to provide richer functionality and therefore needs to

protect its users against web-based attacks. However, Chromium is just as susceptible to phishing,

cross-site scripting and other web-based exploits as any other browser on another platform. A browser

is a link between a user's environment and all web services. This information can be invaluable to a

hacker. Because of this, it's important that Chromium keeps the browser and its processes secured in a

sandbox, not allowing access to the system that's using it. If an attacker could escape this sandbox, it

https://www.chromium.org/developers/design-documents/sandbox
https://www.chromium.org/chromium-os/chromiumos-design-docs/security-overview#TOC-Phishing-XSS-and-other-web-vulnerab
https://www.chromium.org/chromium-os/chromiumos-design-docs/security-overview#TOC-Phishing-XSS-and-other-web-vulnerab
https://www.chromium.org/developers/design-documents/sandbox
https://bugs.chromium.org/p/chromium/issues/list?can=1&q=Type%3DBug-Security+status%3AFixed+label%3ACVE&colspec=ID+Pri+M+Stars+ReleaseBlock+Component+Status+Owner+Summary+OS+Modified&x=m&y=releaseblock&cells=ids

would be up to the OS to mitigate security risks. Additionally, if a user’s browser directory is stored on a
server then the server could be compromised and then anything in the cache and history is in the hands
of someone else. This isn't as much of a problem for a personal computer but if the device is connected

to an enterprise system then that cached data and history can contain sensitive information.

Chromium considers two different kinds of adversaries in their threat model, an opportunistic

adversary and a dedicated adversary. An opportunistic adversary is an attacker that does not target any

specific user or enterprise for an attack, but rather they deploy attacks that lure users to websites that
compromise their machines or to apps that try to gain unwarranted privileges. On the other hand a
dedicated adversary may target a user or enterprise for an attack and is willing to steal devices to

recover data or credentials. They will do anything that an opportunistic adversary may do.

Example Attacks

A web browser provides three different attack routes: An attack can target the user of a web browser,
the web browser program itself, or a web application running within the web browser. With this in
mind, we can explore possible vulnerabilities that could be made use of to compromise the security of a

web browser application, such as Chromium.

A good web browser tries to protect the user from social engineering attacks, such as phishing.
Chromium handles this by displaying warnings for known malicious sites. Without sufficient
anti-phishing security, the browser could allow an actor to perform a man-in-the-middle attack and
serve an unsuspecting victim a web page other than the one they believe they are accessing. From
there, if the victim supplies any sensitive information, the attacker can get their personal data. This
compromises user confidentiality, as well as the integrity of website data (the page a user accesses is
the one they intended to).

Another approach to attacking a web browser is to use its features against it. Chromium allows for 3rd
party applications, known as extensions, to be installed and run in the browser. The goal of this is to
allow developers to expand on the functionality the web browser provides. Because these extensions
need some level of trust to execute code, the browser must protect against the potential for exploitation

of vulnerabilities in them.

Chrome ships with a Flash extension pre installed. If a vulnerability is then found in that version of
Flash, an attacker could leverage it and perform code execution on a victim’s machine through the
Chrome web browser. Among other techniques, Chromium protects against this by running in a

“sandboxed process”, which would require an attacker to find a second exploit to exit that sandbox in

4

https://www.chromium.org/chromium-os/chromiumos-design-docs/security-overview#TOC-Our-threat-model
https://www.chromium.org/chromium-os/chromiumos-design-docs/security-overview#TOC-Our-threat-model

order to execute code on the machine. An attack in this manner would violate the integrity of the

system.

One other common area vulnerable to attack via a web browser is a web application. An attacker can
use a plethora of vulnerabilities, such as cross-site request forgery, or cross site scripting to
compromise the confidentiality of the system. A malicious actor may attempt to get the web browser to
execute Javascript code in another web app’s context, potentially exposing sensitive data within that
web app to a third party. By wrapping an invisible HTML frame around a real application, an attacker
could intercept user input. This attack, clickjacking, would compromise the confidentiality and integrity
of the system. Chromium works to defend against these issues by blocking certain cross-site-scripting

attacks or by issuing a warning to users.

Vulnerability History

Given the knowledge of Chromium'’s known assets and vulnerabilities, the team found four interesting
vulnerabilities to investigate. These range from high to low severity. See the team’s notes below about

each vulnerability and a detailed description of its unique history in the Chromium network.

CVE-2013-2879: Issue 252062 - An attacker can sign in a victim to his own

account.

This vulnerability was first reported in a thorough writeup by Andrey Labunets on June 19, 2013. The

vulnerability existed because of a chain of bugs that allowed the sign in manger to be tricked into

able to subvert a CSRF check by a XSS attack on any google.com subdomain to sign in, and then using a
bug in the syncing functionality, install an extension and execute malicious code. For reporting this

vulnerability Labunets received a reward of $21,500 from the Chromium team.

The Chromium team broke this vulnerability report into two separate issues on June 20, 2013. The team
marked issue 252062 as high priority and later labeled it as a fix to the above CVE. The syncing bug that
allowed code execution, was recognized in issue 252034 which was later labeled as a fix to

CVE-2013-2868.

CVE-2013-2879 was acknowledged as fixed on July 2, 2013. Three different code reviews comprised the

fix. The first about displaying a confirmation dialog for untrusted sign ins (revision 208520), the second

to stop trusting the sign in process if it navigated to another url (revision 208589), and the third to fix a

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-2879
https://chromiumcodereview.appspot.com/17962003
https://codereview.chromium.org/17482002/#ps1
https://src.chromium.org/viewvc/chrome?revision=208520&view=revision
https://bugs.chromium.org/p/chromium/issues/detail?id=252062#c22
https://bugs.chromium.org/p/chromium/issues/detail?id=252010
https://codereview.chromium.org/17727002
https://twitter.com/isciurus/status/347383037899730946
https://bugs.chromium.org/p/chromium/issues/detail?id=252062
https://bugs.chromium.org/p/chromium/issues/detail?id=252010#c43
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-2868
https://developer.chrome.com/extensions/npapi
https://src.chromium.org/viewvc/chrome?revision=208589&view=revision
https://bugs.chromium.org/p/chromium/issues/detail?id=252034
https://bugs.chromium.org/p/chromium/issues/detail?id=252062

regression caused by the second code review (revision 209083). The last revision happened on June 28,

2013, a few days before the fix was formally recognized.

This vulnerability was introduced when the one click signin helper.cc file was first created. The

developer who made this file never thought about the case where a user might want to navigate to

another url during the sign in process, and thus never checked for it in their code. There were many

places where this issue could be found and fixed, in the one click signin helper.cc file there were 134
commits between the introduction of the vulnerability and it's fix. One of the 134 changes exacerbated

the issue by allowing a confirmation window for the sync function to be skipped.

These mistakes caused an integrity and confidentiality violation that persisted in the system for 480
days (nearly 16 months). A focus of defence in depth might have completely mitigated this vulnerability,
or at least stopped the confirmation mistake that made it worse. In the future developers that worked
on this vulnerability should remember that XSS attacks are hard to mitigate. Sometimes, you can
mitigate a XSS attack through escaping HTML characters, but that doesn’t always solve the issue. In the
case of this vulnerability, the attack happened when a parameter wasn't correctly validated by the
OAuth 2.0 proxy; it could be tricked to load a javascript url. Developers should know it can be dangerous

to always assume that urls for sign in are never tampered with.

CVE-2012-5142: Issue 160803 - Crash in History Navigation

Chromium's history was put at risk when a repudiation vulnerability was found by developer and

project member, Icamtuf@google.com, on November 13, 2012. This vulnerability includes a bug which

shows that Google Chrome, before 23.0.1271.97, does not properly handle history navigation. This bug

allowed the opportunity for remote attackers to execute arbitrary code or cause a denial of service via
unspecified vectors. This undoubtedly raises concern among the system because it compromises the

availability of the history navigation feature.

Since this was a breach in access, or a denial of service, it was easily identified as a security fault that
potential attackers could take advantage of. This vulnerability introduced multiple security faults in
Chromium including the following specifications: confidentiality impact (there is information disclosure
where system files can be revealed and assessed), integrity impact (there is a compromise in integrity
because there is a complete loss of system protection), availability impact (the main resource is shut

down meaning that the attacker can make the resource completely unavailable), vulnerability type

(denial of service execute of code) —rating this bug with a CVSS Score of 10.0 (the highest). Several

developers from chromium jumped on the issue and tried to address this with the best developer for

https://bugs.chromium.org/p/chromium/issues/detail?id=160803
https://src.chromium.org/viewvc/chrome/trunk/src/chrome/browser/ui/sync/one_click_signin_helper.cc?annotate=198866&pathrev=208520#l205
https://src.chromium.org/viewvc/chrome?view=revision&revision=124996
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-5142
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-5142
https://chromiumcodereview.appspot.com/17962003
https://bugs.chromium.org/p/chromium/issues/detail?id=160803
https://src.chromium.org/viewvc/chrome/trunk/src/chrome/browser/ui/sync/one_click_signin_helper.cc?view=log&pathrev=208520
https://src.chromium.org/viewvc/chrome?view=revision&revision=124996
http://www.cvedetails.com/cve/CVE-2012-5142/
mailto:lcamtuf@google.com
https://src.chromium.org/viewvc/chrome?revision=209083&view=revision

the job. The were 18 developers (including sherrifbot and bugdroid) who were actively involved in the
discussion on the issue: addressing the fix, identifying its potential security risks that it caused, and

assisted with merging and completing the fixed issue.

The fix for this vulnerability happened on November 15, 2012 (two days after it was introduced) and was

completed by developer Charlie Reis (creis@chromium.org). His fix was part of Chromium's Revision

167856 and involved adding four lines of code that would supply an additional condition to ensure the

transient entry is discarded on in-page navigations. Code specifically, Reis required a check for

‘pending_entries’ and then would ensure the code would continue to execute if true. Although the fix for
this vulnerability is relatively minor, it is important to note that several bugs can arise from the depths

of misusing the program.

Despite the speed of this vulnerability fix upon discovery, it took some time to make it into the next
patch. It wasn't until November 30, 2012 when developer ‘bugdroid1’ merged the fix in in Merge 1271
and was no longer viewed as a threat to the system. Chromium’s system was updated to include this
merge and reflected these changes in later versions. Affiliated systems using Chromium, such as
openSUSE experienced similar issues with this original bug, as they were not automatically updating to

what Chromium was currently running.

On December 12 2012, Matthias Weckbecker of openSUSE reported Bug 794075 for the openSUSE

system running on chromium: 23.0.1271.97 and classified this as a high severity in their system. He

reports the exact known issue and requests openSUSE to fix this. Since then, openSUSE released an
update (openSUSE-SU-2012:1682-1) on December 21, 2012 that fixed several affiliated vulnerabilities
including CVE-2012-5142.

What is learned from the mistake made in this vulnerability as well as how others have managed their
systems (i.e. openSUSE) involves very well-known software engineering fundamentals. The mistake that

was made with this vulnerability arose from insufficient testing. As shown in the commit history, Reis

included an extensive test to the main controller where the bug originated. Testing is a very significant
engineering practice, and well crafted tests could have prevented an issue like this before it was
released. Another valid fundamental that was not exhibited here is automatically keeping a system as
up to date as the features it it using. openSUSE does not have automatic updating for their
Chromium-reliant components and thus, experienced an issue that was already found and fixed. They
allowed this bug to compromise their system for an entire month before discovering it on their own.
This found bug in openSUSE (same as found in Chromium, just needed a newer patch) may have been

the root action for them to even update the Chromium version they were using.

https://bugs.chromium.org/p/chromium/issues/detail?id=160803
https://www.opensuse.org/
https://bugs.chromium.org/u/3275348242/
https://chromiumcodereview.appspot.com/11377169
https://www.suse.com/security/cve/CVE-2012-5142.html
https://bugzilla.suse.com/show_bug.cgi?id=794075
https://bugs.chromium.org/p/chromium/issues/detail?id=160803
https://bugs.chromium.org/p/chromium/issues/detail?id=160803
https://www.suse.com/security/cve/CVE-2012-5142.html
mailto:creis@chromium.org
https://chromiumcodereview.appspot.com/11377169/patch/1/3
https://chromiumcodereview.appspot.com/11377169/patch/1/2

As developers are tasked day-to-day with fixing many bugs, vulnerabilities, and other faults in code, it is
necessary that they realize the importance of lessons learned from vulnerabilities like CVE-2012-5142.
Best software practices often include testing as appropriately in depth as needed and optimizing a
system to continuously be running on up-to-date software that is also secure. If following these
practices, the likelihood of vulnerabilities should be lessened and the confidentiality, integrity, or

availability of software will not be compromised.

CVE-2014-3160: Issue 380885 - Cache-based SOP-Bypass for Images

On June 4, 2014, Christian Schneider reported a security vulnerability that would allow a malicious
website to bypass Same-Origin Policy restrictions, load any protected image a client has access to, and
return that image data back to the attacker's servers. The exploit relied on a vulnerability in Chromium
that allowed specially crafted cached SVG images to bypass SOP checks. The vulnerability was fixed in
the development code on June 16, 2014, and released as part of a Chrome update on July 14, 2014.
Schneider was awarded $1000 for their report and a bonus $1000 for their detailed write-up and Proof

of Concept.

The exploit worked by the malicious site first caching an SVG file on the client’s browser. This SVG file
contained a reference to the protected image using an xlink. The cached image was then loaded into an

HTML5 canvas element. Because the image cache does not enforce SOP on embedded images in SVG,

the dataURL can be extracted from the canvas and sent to an attacker. This vulnerability is dangerous in
that it will load the image data from sites that require authentication (via standard auth or cookie auth).
This protected image data can then be viewed by an unauthorized attacker, compromising the
confidentiality of the end user. This exploit only worked on images which did not have anti-caching

headers. More details on the exploit, including a functional example, are available_here.

In order to adhere to the Same-Origin Policy, Chromium requires that all resources be checked to see if
they are allowed to be accessed prior to them actually being loaded. The specific Boolean function that
handles this is ResourceFetcher::canRequest(...). Inside this function, numerous cases are checked to be
able to determine whether the request is cross-origin, and whether or not it should be allowed. Until
this exploit was reported and the vulnerability was patched, a check did not exist to prevent all

SubResource requests within a cached SVG image.

This exploit was clever, and made use of techniques an engineer can easily overlook. The vulnerability
had been in Chromium since this function’s creation. There are two ways this exploit could have been
prevented: As the exploit is at the browser level, one could argue that it was Chrome’s responsibility to

check for this violation of Same-Origin Policy, and it's evident that this was overlooked for a long time.

https://bugs.chromium.org/p/chromium/issues/detail?id=380885#c28
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-3160
https://bugs.chromium.org/p/chromium/issues/detail?id=380885
https://bugs.chromium.org/p/chromium/issues/detail?id=380885#c24
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-3160
https://src.chromium.org/viewvc/blink?view=revision&revision=176225
https://bugs.chromium.org/p/chromium/issues/detail?id=380885
https://christian-schneider.net/ChromeSopBypassWithSvg.html
http://stackoverflow.com/questions/19421943/chrome-doesnt-cache-images-inside-svg

On the flipside, developers of web applications that serve private images can prevent this exploit by
including proper anti-caching headers to prohibit the sensitive image from being cached by a client's

browser.

CVE-2016-5133 Issue 613626 - Credential Phishing via Transparent
Authenticating Proxy Vector

Patch Eudor found a medium level security bug on May 20, 2016. The vulnerability included
mishandling origin information during proxy authentication, which would allow man-in-the-middle
attackers to spoof a proxy-authentication login prompt or it could trigger incorrect credential storage by
modifying the client-server data stream. The main issue was that the browser asks the user for
authentication for a proxy. The user would input their credentials for what they thought was a trusted
HTTP connection but instead they would send in clear text their credentials to an attacker. This issue
violates the privacy and trust of the user and therefore Chromium's confidentiality and integrity was

compromised.

If a user were to encounter this issue they would see a pop-up window saying “Proxy Authentication
Required” prompting the user for their username and password. Unfortunately the fix couldn’t be as
simple as tweaking the wording or the UIL. Users aren't generally familiar with authentication proxies
and if a user is fooled by this type of phishing attempt they could just as easily be fooled by a modified

string.

The issue had to be fixed immediately to prevent these phishing attacks. The fix to mitigate this issue
involved fixing the origin used in the proxy authentication prompt to use the origin of the proxy server
instead of using the target origin. It also involved using the correct origin when saving proxy
authentication credentials. To mitigate future issues functionality was added to indicate to the user
whether or not the proxy server connection is insecure. An interstitial, or an in between page to
connect to the proxy server connection, was made and the omnibox now gets cleared when showing a
proxy authentication prompt. Developers should keep in mind that UI design needs to adhere to the
user and browsers should tell their users when they are accessing something insecure. It's part of good
engineering practices to keep the user from accidentally releasing their personal information through
an insecure proxy. There were 3 developers involved in this fix and 10 files were changed across 3

patches. Patch Eudor was rewarded $1,000 for discovering the vulnerability.

https://googlechromereleases.blogspot.com/2016/07/stable-channel-update.html
https://bugs.chromium.org/p/chromium/issues/detail?id=613626#c2
https://codereview.chromium.org/2067933002/
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-5133
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-5133
https://codereview.chromium.org/2067933002/
https://bugs.chromium.org/p/chromium/issues/detail?id=613626#c22
https://bugs.chromium.org/p/chromium/issues/detail?id=613626

Chapter 2: Design Analysis

Architecture Overview

Chromium'’s architecture breaks down into two main subsystems: a rendering engine and a browser

kernel. At a basic level, the rendering engine is responsible for parsing the HTML and CSS received from
a webpage, providing an interpreter for Javascript content, and for rendering all of these content
sources on the browser. The browser kernel functions are similar to an OS kernel, but instead of
managing interaction between low-level system functionality and hardware, Chromium'’s browser kernel
manages low level browser functionality. Its responsibilities include handling multiple tabs (different
rendering engine instances), managing browser state, and controlling interaction between the browser

and the user's underlying file system. Figure 1 shows the way these two systems connect.

I|.;'_'_a'.J'J.._..._..._..._..._.I IJ.uI-\J._..-.Ja.;..._...__.._..._..._..._..._..._..._..__..._..._.._.
: Browser
&l -{ RenderPracessHast Aencerviewtast
E s FR8] Channel |—+—-+ RenderProcessost
= H Randereatios: |

.i i.]

E E Nandveed. . cxmsny [+ o o v i e -

= = PC ; b

= S| FendeProcess |

= — Fanoryios

= P I

$ Renderer R

%p; :[...J E : U SR

llmmummnmnﬂ RerderProcess | Rianderhen
Renderer - LI\ ___J

Figure 1: The browser “manages” the U, tab, and plugin process.
hittps:ftweeranchromium.orgideselopers/design-d couments! multi-process-architec uresArchitectural_overview

10

http://seclab.stanford.edu/websec/chromium/chromium-security-architecture.pdf

Chromium chose to build their product in this way in order to prioritize protecting the user from an

attacker reading or writing from the their file system(page 2). Since the browser kernel can interact with

the file system, they want to protect if from vulnerabilities elsewhere. They work to secure against a
vulnerability in the rendering engine allowing code execution in the browser kernel. While the rendering
and browser kernel subsystems are not explicitly security features, they implement security strategies.
Each rendering engine instance runs inside a sandbox which bounds the process from escaping into the
browser kernel and/or the user's system. It implements this distrustful decomposition, in part, because
of the complexity of its features. The render is a complex part of the system that has to deal with many

parsing tasks and has historically been the source of many browser vulnerabilities. To mitigate these

vulnerabilities, the rendering engine sandbox adheres to two basic security design principles: defense in

depth and principle of least privilege. Chromium developers are taught to assume: sandboxed code is
malicious code, the sandbox should be fault-tolerant, and that it cannot rely on code emulation for
security. To maintain different levels of restrictions in sandboxes, Chromium sets the sandbox

configuration in a policy that knows about different levels of restriction.

The sandbox is a good step in securing the system against Broker
attackers who want to execute malicious code outside their '":“_ﬂ':"'

own process. It however, hasn't always been in use for

important features. As stated in Chapter One, one of R (R ray
Chromium's assets is the ability to add extensions (plug-ins). .

Chromium has offered the option for these extensions to -
follow the principle of least privilege, but historically (page HE Target E
8) developers have usually requested maximum privileges g"" o WhCChent ﬁ E
for their extensions. This means that plug-ins could often § | Potey Engne

be run outside the sandbox with full privileges. Chromium E p— .
allowed this in order to not hinder extensions from being n

built, and to maintain compatibility with those pre-existing §
plug-ins. The problem with this was that attackers could § Target 5
exploit vulnerabilities in those plug-ins to subvert LETEEY B e —| E
Chromium's architecture and execute malicious code on the Doy Egen

browser and possibly the user’s system. As an ongoing

resolution to this issue, Chromium continues to build out

their sandbox functionality to mitigate this problem: by

creating a way for the browser to manage sandboxing | figure 2: Most plugins will run inside a target process
hittpssferara chramium.argfdeselopers/design-d ccuments'sandbax

extensions more appropriately.

11

https://www2.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-185.pdf
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-185.pdf
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-185.pdf
http://seclab.stanford.edu/websec/chromium/chromium-security-architecture.pdf
https://www.chromium.org/developers/design-documents/sandbox
http://www.adambarth.com/papers/2008/barth-jackson-reis.pdf
https://www.chromium.org/developers/design-documents/sandbox/Sandbox-FAQ
http://seclab.stanford.edu/websec/chromium/chromium-security-architecture.pdf

In addition to architecting the system in a way to protect the user from an attacker running malicious

code on their system, Chromium implements features that are explicitly for security. Since Chrome 37

(released in August 2014), the WebCrypto API has been enabled by default. Chromium’s implementation

of the WebCrypto API can be used to perform basic cryptographic operations in web apps and has uses

ranging from user authentication to the confidentiality and integrity of communications. Chromium also

implements strict transport security, which allows web servers to affirm that browsers should never

interact with it through the insecure HTTP protocol. Providing strict security measures impedes exploits

from taking place via open protocols and other vulnerable areas in the browser. Chromium has also
been able to compile a database of websites identified as malware or phishing sites and uses the

Chromium UI to warn users about the site they're trying to navigate to. They have also worked to

implement new features in hopes to secure against vulnerabilities like clickjacking, reflective XSS
attacks, and CSRF attacks.

Chromium'’s documentation repeatedly reminds their developers about the importance of security. They

work to design the system with defense in depth, and to remind the developer that security is a team

responsibility. If a developer makes a security mistake, there are many processes in place to try to find
it before it becomes a vulnerability: Chromium audits, regression tests, and fuzzes their code base.
Sometimes security mistakes in a subsystem are not caught through these methods, but an active
community of bug reporters with a focus on fixing security bugs help mitigate some of the possible

issues.

Security bugs that are left unattended can turn into exploitable vulnerabilities which might harm the
system in a number of ways. For example, the rendering subsystem is susceptible to availability
problems for the user. A denial of service attack caused by the render (or even the browser kernel) can
cause the user to need to kill a tab, or sometimes even restart their browser. However, availability
failures tend to be a tab specific problem because of the sandbox architecture. Since this is only a local

problem, however, Chromium doesn’t usually recognize denial of service issues to be security

vulnerabilities. Vulnerabilities in the browser kernel can cause both integrity and confidentiality
violations outside the subsystem. A viable attack on Chromium'’s kernel could expose the user data, and

any plug-in data that's stored in it. Many of Chromium'’s plans to change parts of the system architecture

work to mitigate these problems. They plan to make changes to make complex parts of the system more

simple to reduce the likelihood of adding security bugs and build a better system overall.

12

https://support.google.com/chrome/answer/99020?hl=en
https://blog.chromium.org/2010/01/security-in-depth-new-security-features.html
https://w3c.github.io/webcrypto/Overview.html
https://www.chromium.org/Home/chromium-security/reporting-security-bugs#TOC-Reporting-Crash-Bugs
https://en.wikipedia.org/wiki/HTTP_Strict_Transport_Security
https://www.chromium.org/blink/webcrypto#TOC-Accessing-it
https://www.chromium.org/Home/chromium-security/core-principles
https://blog.chromium.org/2010/01/security-in-depth-new-security-features.html
https://www.chromium.org/Home/chromium-security/core-principles
https://www.chromium.org/Home/chromium-security/reporting-security-bugs#TOC-Reporting-Crash-Bugs
https://www.chromium.org/blink/webcrypto#TOC-Accessing-it
https://en.wikipedia.org/wiki/HTTP_Strict_Transport_Security
https://w3c.github.io/webcrypto/Overview.html
https://www.chromium.org/blink#architectural-changes
https://www.chromium.org/blink#architectural-changes

Threat Model

Below are several threat models that outline security boundaries for Chromium’s most important
assets. These include: separation of processes for each of Chromium'’s tabs, the creation of separate
channels through an Inter-Process Communication (IPC) process, and control over extension privileges

through sandbox boundaries.

e
TabProcess1 fabew

ResourceHost |

Site Instanc
TabProcessd

i

I

I tabliew?
Process2 :

Figure 3 Threat Model of Chromium’s Multi-Tab Processes

13

[
1
I
I
Tab et ot I
I
I
1
[
1

'
I] ksl
I]
SaasCraast s cteds
i]
v)
INEENENNEENEENENNRNERRRREEE TR ==
Figure 4 Threat Model to Display Web Content
' 2ISEEXIICEXIICEX X0 EIIEEXIICETIICEET S
I 1 I I
1] i |
|] 1 |
! I ! Tab Process i
|] i |
1] 1 |
1 I I I
1 i I . i
i I i |Ext=nmn ;'m-:m Dm] I
1] I o I
I I '
I Extention Logic
1 Extension Core Native Binary
I {eptional)
1
1
|
I
|

Figure 5 Threat Model Detailing Extensions

Figure 3 highlights how Chromium separates the rendering processes for different tabs. The boundaries
around Tab 1 and Tab 2 restrict access from the other processes and the rest of the system. This helps

with memory protection and access control.

14

https://www.chromium.org/developers/design-documents/multi-process-architecture
https://www.chromium.org/developers/design-documents/multi-process-architecture

Figure 4 outlines how web pages are displayed. The I/0 Thread contains all of the IPC communication
and handles all of the network communication in order to prevent it from interfering with the user

interface. The I/O Thread connects the Resource Message Filter to a network layer and extends the

boundaries of the user's machine. The IPC Channelproxy boundary acts as a gateway between the I/0

Thread and the Browser threat to further secure the IPC pipe.

The Browser Process boundary isolates the Web Content and sensitive user data such as browser
history and user passwords. The Web Content represents the contents of a web page, this is very
important to the browser system and sets the Browser Process boundary at a higher priority than
others. Figure 5 accentuates how the extensions interact with the browser. The Sandbox Process

Boundaries limit the overall privileges for each extension and divides the extension into 3 components:

content scripts (Web Content), an extension core, and a native binary. For an attacker to gain user
privileges they would need to forward malicious input from the content script to the extension core and
then from the extension core to the native binary, where the attacker would then need to exploit a
vulnerability. Chromium offers different deployment options for extensions depending on the user's

environment. User’'s running OSX or Linux can install extensions via a preferences |SON file (different

link) and user’s running Windows can install via the Windows registry (different link).

Assets to Threat Model Tracing

These sandboxes described in the architecture overview create a boundary between the web page and
the other parts of the browser. Operations that require additional functionality, such as accessing the
assets mentioned in chapter one including cookies, the clipboard, and user history require interacting
with the browser kernel, which maintains unique privilege information for each sandbox, detailing what
it may (and may not) access. By placing this sandbox on the edge of the browser, Chromium intends to
decrease the probability of an exploit against the system. Each sandbox has its own rendering engine
and set of permissions for the files it may access. If the TabProcess wishes to do more than just alter the
state of the DOM, it must communicate through a Channel to the browser kernel API, which determines

what actions it may take, and executes those that are allowed.

Due to the sandboxed tabs discussed above, Chromium needs a way to handle input and output from
the browser process to the outside world. Network requests, mouse and keyboard inputs, and other
external communication messages need to be routed to the correct sandbox to ensure the protection of

another asset, user data. Chromium manages this through an Inter-Process Communication (IPC)

process. In brief, this process handles the transfer of messages from external inputs to their respective

15

http://www.chromium.org/developers/design-documents/displaying-a-web-page-in-chrome
https://developer.chrome.com/extensions/external_extensions#registry
https://www.chromium.org/developers/extensions-deployment-faq#TOC-What-are-the-supported-deployment-options-for-extensions-after-this-change-
https://www.chromium.org/developers/design-documents/inter-process-communication
http://developer.chrome.com/extensions/external_extensions.html#preferences
https://www.chromium.org/developers/extensions-deployment-faq#TOC-What-are-the-supported-deployment-options-for-extensions-after-this-change-
http://www.chromium.org/developers/design-documents/displaying-a-web-page-in-chrome
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-185.pdf

webpage sandboxes. It ensures that messages aren't sent to unintended TabProcesses, and that user

data isn't leaked. Figure 4 shows how these two processes communicate with each other.

Separating the I/0 handler from the rendering process ensures that faults in an I/0 process do not
cause the rendering engine to hang or otherwise affect performance. Additionally, the IPC process
reduces the probability of an exploit by preventing messages from being read by TabProcesses other
than the one they were intended for. Were this not in place, a maliciously crafted website could take
advantage of a bug in the rendering engine and retrieve information from keyboard input, network
traffic, or mouse clicks the user makes in a different tab. This special handling of I/O messages reduces

the probability of that exploit occurring.

Chromium allows users to expand on the functionality of Chromium through the installation of 3rd
party extensions. While Chromium cannot reasonably control the content of an extension, or the
specific functionality it may provide, it can protect the other parts of its system by separating extensions

into three sandboxed processes: the Content Script, Extension Core, and Native Binary. Chromium gives

each of the three processes different permissions and levels of access to the system. Native Binaries are
the only process allowed to interact with the host machine with full user privileges, and can only receive
messages from the Extension Core. The Extension Core has privileges to the TabProcess, but can only
interact with the DOM / web content through XMLHttpRequests and through Content Scripts. Content
Scripts may manipulate the DOM of a single web page, but their methods of communication to other
processes is limited to sending messages to the Extension Core. These communications are detailed in

figure 5.

This extension architecture reduces the probability of an exploit by using the strategy of least privilege.

By separating functionality into three different processes with unique permissions, each process is
extremely limited in what it can do. The least secure component in this architecture, Content Scripts, do
not have the ability to communicate directly with Native Binaries, which are the only process that allows
arbitrary code execution. For an attacker to successfully execute code on a user's machine, they must
first exploit the Content Script to forward a malicious message to the Extension Core. From there, they
must find another exploit in the Extension Core to send that malicious message to the Native Binary.
From there, the attacker must exploit a vulnerability in the Native Binary to execute code on the host
machine. In order for an extension to successfully escape the sandbox, a hacker must be able to exploit

vulnerabilities in three separate processes.

Chromium'’s assets are well organized in its sandboxed architecture. It was engineered from the

beginning with security in mind. The threat model above highlights some key pieces of this design.

16

https://www2.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-185.pdf
https://cs.gmu.edu/~sqchen/publications/NDSS-2012.pdf

Through a combination of defense in depth strategies and strict adherence to the principle of least
privilege, Chromium makes it extremely difficult for an exploit to break out of its sandbox and gain

access to or affect other processes.

17

Chapter 3: Code Inspection Assessment

Inspection Selection

For the code inspection we chose files that had promising content, had a history of vulnerabilities, and
could be related to our product assets. The App_Window.cc file was chosen because it connects two
very important product assets, the Web Content that gets displayed in the web browser and any
extensions that get attatched to that application window. The StyleElement.cpp file was chosen because
it contains sensitive information that could turn into potential vulnerabilities if attacked. The
Encryptor.cc file was chosen because it contains encryption algorithyms which interact with sensitive

user information, which is one of Chromiums most important assets.

Looking back on our reasoning for choosing these files we probably would have chosen differently. The
Encryptor and the StyleElement files had promising code inspections but the App_Window file fell short.
When choosing files for code inspections it's important to keep in mind that longer files don't always
yield any results. It's more important to find files that have a history of vulnerabilities or have any open
or recurring issues. Files that work with any product assets or sensitive information should also be

considered for code inspections.

Code Inspection Results

This section provides information about several files in Chromium as well as highlighted vulnerabilities
and issues that have brought security concerns to attention. These source files are responsible for
parsing and corresponding to style sheets, manipulating the display of Chromium browser view
windows, and encryption and cipher handling. Each file has their own set of security concerns and

analyzed vulnerabilities that have been listed in a chart below each section.

StyleElement.cpp

This file reads a given HTML element and parses its corresponding stylesheet to check it for styles that
needed to be updated on the renderer's version of the stylesheet . If there are styles that need to be
overridden in order to not inherit from the element's parent, the rendering engine’s version of the

stylesheet is updated. The file resides in the rendering subsystem, which is an area of the system that

18

https://src.chromium.org/viewvc/blink/trunk/Source/core/dom/StyleElement.cpp

has been a source of many past vulnerabilities. As mentioned in Chapter 2, this subsystem is sandboxed
so malicious attackers can not reach the assets outlined in Chapter 1. This means the only asset this
source code touches is the integrity of the displayed HTML styling. If a developer made a mistake in this
file, the way webpages render styles could look different than intended. If a developer allowed write

access to the Document Object Model from this file, bigger problems, like XSS attacks could arise.

vulnerabilities in
Google Chrome
before 27.0.1453.93
allow attackers to
cause a denial of
service or possibly
have other impact
via unknown
vectors.

fixes from internal
audits, fuzzing and other
initiatives. Has been
connected to many other
issues including the
above vulnerability.
Affects the function
*StyleElement::clearShee
t/
ElementRuleCollector::co
llectMatchingRulesForLis
0

Line Number | Severity Description Issues/Bugs Fix?
79-83 High Denial of Service via | CVE-2014-1743 Fix is supplied by
application crash or | Use-after-free adding an
other possible vulnerability in the additional check
unspecified impact | StyleElement::removedFr | to see if the user
through crafted JS omDocument function in | is registered as a
code that triggers core/dom/StyleElement.c | candidate. If not,
tree mutation pp in Blink, as used in they assert a
Google Chrome before warning. High
35.0.1916.114. security label —
Compromises the $3,000 Bounty
availability and integrity | Awarded for
of the system. fixing bug
149-157 High Multiple unspecified | CVE-2013-2836 Various This bug was

attached to
several issues and
one CVE. It was
found detected by
AddressSanitize.
This bug is
tracking several
already fixed
issues.

App_Window.cc

The App_Window.cc file contains the functionality responsible for manipulating and displaying the
Chromium browser view windows. It contains functions for initializing new browser windows, entering
full-screen mode, and determining / saving the current state of the Chromium application. The primary
asset that this code is responsible for is the window GUI state. It must determine whether certain
actions are allowed to be taken under certain conditions, such as when a window may enter full-screen

mode. Additionally, as each browser window / tab runs in its own process, App_window is responsible

19

https://vuldb.com/?id.8991
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-1743
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-2836
https://vuldb.com/?id.8991
https://src.chromium.org/viewvc/blink/trunk/Source/core/dom/StyleElement.cpp?r1=170702&r2=170701&pathrev=170702
https://bugs.chromium.org/p/chromium/issues/detail?id=241595
https://github.com/google/sanitizers
https://cs.chromium.org/chromium/src/extensions/browser/app_window/app_window.cc?dr=C&sq=package:chromium

for ensuring that its process is terminated when the main application is closed. App_window lies within
the extensions subsystem, providing an API for extensions to use to manipulate the browser and get

information on its state.

There are two “TODO" sections in this codebase that indicate potential security concerns. The first is
that there are no tests associated with entering full screen mode on MacOS. This is an area of concern
because Chromium has acknowledged bugs and vulnerabilities in this functionality in the past. If the

code continues to be left untested, they could miss potential issues in the system.

The other area for potential vulnerabilities in this code has to do with when Chromium believes it is
valid to open a “file chooser” window. A developer reported a bug showing that file chooser windows
would crash if they were selected from a “panel” window type. The fix for this was simply to check if the
window was a panel and if it was, don't attempt to open the file chooser. With this fix, the team
explicitly stated that there was more work left to do, but the issue was left at that and hasn't been

re-visited since September 23, 2015.

Line Number | Severity | Description Issues/Bugs Fix?

920-926 Low If a panel window is created Panel windows do | The issue should
and the user accessess a page | not work with be re-evaluated
that's a sandbox page or input type file by the developers
otherwise and then tries to to see if it's worth
click on an input file button fixing for the
the page doesn't do what it's current version.
intended to do. The file
selection dialog should appear
but instead nothing happens.

This functionality worked
before in the Chrome 23.x
release version. This issue has
been open for 3 years.

632-642 Low This functionality has not been | ExtentionFullscree | Properly simulate
fully tested because the nAccessPass test | a‘user gesture’to
developers cannot recreate a | fails due to no fully test out this
‘user gesture’. A user gesture | user gesture code
is a touch event that can
either be a Press, Move,

Release, or Cancel.

20

https://bugs.chromium.org/p/chromium/issues/detail?id=172502#c24

Encryptor.cc

This file contains Chromium’s encryptor implementation. It has functions built for block cipher

encryption. The functions in this file implement the encryption (plaintext to ciphertext) and decryption
(ciphertext to plaintext) functionality using an AES key. The file also implements a 128-bit counter for

use in AES-CTR encryption. The code for this file lives in the browser kernel subsystem with other crypto

functionality that Chromium added. Anything that is encrypted with this encryptor is affected by this
source code; that means assets like user passwords and cookies are affected by the file. If a developer
made a mistake in this part of the system the Encryptor could be at risk. Breaking encryption of user

data could be detrimental for user confidentiality.

this is unclear
and would be
used incorrectly
had not been
warned via
warning

authenticity of the data. The caller of
Decrypt() must either authenticate the
ciphertext before decrypting it, or take
care to not report decryption failure.
Otherwise it could inadvertently be
used as a padding oracle to attack the

Line Severity Description Issues/Bugs Fix?
Number
33-41 Medium Direct Privilege | On destruction this class will cleanup | Unknown and
escalation by the ctx, and also clear the OpenSSL. Unidentified
using an This as an Issue
Q,FMY Could affect the integrity of the
file :
program because it does a hard reset
of the the OpenSSL
66-70 Low Possible Comments and code reveal that if Unknown and
improper there is an overflow, they increment | Unidentified
handle of an the value that is most significant at as an Issue
overflow the point in the system. Does not
reveal what is classified as “most
significant” and is unknown if the
system is aware of this behavior
69-76 Low The header file // WARNING: In CBC mode, Decrypt() | Unknown and
(encryptor.h) returns false if it detects the padding | Unidentified
specifies a in the decrypted plaintext is wrong. as an Issue
warning of how Padding errors can result from
to use the :
decryption tampergd ciphertext or a wrong
authentication. | decryption key. But successful
The logic for decryption does not imply the

21

https://cs.chromium.org/chromium/src/crypto/openssl_util.h?cl=GROK&gsn=crypto/openssl_util.h
https://cs.chromium.org/chromium/src/crypto/openssl_util.h?cl=GROK&gsn=crypto/openssl_util.h
https://cs.chromium.org/chromium/src/crypto/encryptor.h?dr=C&sq=package:chromium
https://cs.chromium.org/chromium/src/crypto/encryptor.cc?dr=C&sq=package:chromium
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#Counter_.28CTR.29
https://en.wikipedia.org/wiki/Block_cipher

cryptosystem.

“bool Decrypt(const
base::StringPiece& ciphertext,
std::string® plaintext);”

72-73 Medium Incorrect Return | Comments reveal that the devs left Unknown and
Type for this file with tasks to still complete: Unidentified
booleanvalue | «//T0pO(hclam): Return false if | @S anIssue
Encryptor counter value overflows.” The code

snippet actually returns “true” &
provides a false positive in the system.
This could become corrupt or abused
by the way the system is handling the
boolean (misuse of the intent of the
system)

138-174 High Unused private | Issue 2218903002: These functions Removed
functions have were standalone functions that were functions with
been removed. | not commented out during minimal
This is production. This fix happened 4 testing to see
concerning with | months ago so there is potential that | affected
availability. there is a use case that has not been components.

hit where these two functions are Resolved

actually being used by the system in commit

some way. message
(Closed)

22

https://codereview.chromium.org/2218903002/
https://chromium.googlesource.com/chromium/src/+/45c722a2dbd46ae398bf1fa65bdea444a8ce1aea
https://chromium.googlesource.com/chromium/src/+/45c722a2dbd46ae398bf1fa65bdea444a8ce1aea

Project-Specific Checklist

Domain Specific Concerns

e XSS (client and server side): Being a web
browser, Chromium is in danger of these
attacks. These sorts of attacks can often be
used to bypass checks and maybe even
authentication.

e Failing to protect network traffic and
information leakage : As a web browser,
Chromium needs to protect the data it
interacts with.

e When parsing input, be mindful of it:
The rendering engine is where most of the
parsing happens and is also a source for

many of the vulnerabilities in the system.

Coding Mistakes

e (C++ Catastrophes: Chromium is written
primarily in C and C++, so it is in danger of
these sorts of language specific issues:

o Failure to initialize a pointer
reset

o Failure to pointers on

deletion

Table I
THE SECURITY FLAWS FOUND AND MISSED IN THE CHROMIUM PROJECT
BY MODERN CODE REVIEW, MANUALLY CLASSIFIED ACCORDING TO THE
TAXONOMY OF HOWARD et al. [23]

S ity fl Found Missed
e by code review by code review

XSS (client side) 12 (10%)
C++ catastrophes 8 (11%)
Buffer overruns 6 (8%) 18 (16%)
Too much privilege 5 (7%) 5 (4%)
Information leakage 5 (7%) 1 (1%)
Race conditions 4 (6%) 5 (4%)
Format String problems 4 (6%) 3 (3%)
Catching all exceptions 3 (4%) 0 (0%)
Failing to protect
network traffic 2 (3%) 4 (3%)
Integer overflows 2 (3%) 3 (3%)
Use of Magic URLSs,
predictable cookies F(1%) 1 (1%)
Use of weak password-
based systems 1 (1%) L (1%)
Command injection 0 (0%) 7 (6%)
XSS (server side) 0 (0%) 1 (1%)
Other 15 (21%) 21 (18%)

Figure 6: Security Flaws
http://sback.it/publications/scam2016.pdf

o Bad copy, constructor, destructor, and assignment functions

o Array new and delete mismatches

o Ignoring compiler warning settings

e Integer overflows: This vulnerability is important to watch because, if combined with a malloc,

it can cause buffer overflows.

o Buffer overflows: Data shows that this security flaw is often missed in code reviews, but it

needs to be checked since most of the system is written in C or C++. This mistake can cause

availability problems in the browser.

e Command injection: This vulnerability has been in the OWASP top ten most critical web

security risks and is also often missed in Chromium code reviews.

e Properly handling exceptions: Resources need to be properly disposed of in the exceptions.

23

https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.safaribooksonline.com/library/view/24-deadly-sins/9780071626750/xhtml/ch8.html
https://www.owasp.org/index.php/Top_10_2013-Top_10

Design Concerns

e Too much privilege: Developers need to be careful of what permissions they run processes at.

If this is broken, the sandboxing of the system might be bypassed. This can cause an opening

for arbitrary code execution vulnerabilities

e Validate design and implementation of new features in the rendering engine to make sure

that the sandbox is not broken. Remember, this is important; it has the highest reward payout

for bug reports.

e Validate the design in concurrent parts of the system: This is important to mitigate the issue

of race conditions.

Past Vulnerabilities

The checklist mentioned above outlines
many of the design, domain, and
coding mistakes that cause the issues
seen in Figure 7. If prioritization was
needed for the checklist, it might be
advantageous to focus on the types of
security mistakes that cause the most
vulnerabilities. This that
should be

handling exceptions, race conditions,

means
developers aware of

and buffer and integer overflows.

Vulnerabilities By Type
896

285

142
78 44 84 68 3 5

7

M Denial of Service 896

M Execute Code 78

M xss 44

M overflow 285

2] Memory Corruption 84
Bypass Something 142
Gain Information 68
CSRF 3

M Gain Privilege 5

m Directory Traversal 7

Figure 7 Type Distribution of All Vulnerabilities

http://www cvedetails.com/product/15031/Google-Chrome. html?vendor_id=1224 1

Focusing on these issues could remove the two biggest causes of vulnerabilities: denial of service and

overflows.

Availability Concerns

As seen in Figure 7, denial of service attacks are the biggest cause of vulnerabilities in the system.

Handling the issues mentioned in Past Vulnerabilities should work to mitigate many of the availability

issues. It's important to keep in mind that Chromium does not consider minor (local) availability issues

as vulnerabilities, and thus it might not be as important to mitigate some of these concerns for the

Chromium team.

24

https://www.google.com/about/appsecurity/chrome-rewards/

Inspection Summary

Our inspection of the two files - app_window.cc and encryptor.cc - revealed some potential areas of
concern for the Chromium project. Many of the code files contain “TODOS" or other comments
indicating that certain functionality has not been implemented. Additionally, many of these comments
center around known issues in the system, and reference open bugs reports. While Chromium does a
good job of identifying issues, it is apparent they do not always get around to implementing the changes
to fix them. An example of this is the App_Window.cc file, wherein a bug report from 2015 indicated an
issue with a file chooser dialog. A temporary fix was applied, with a more permanent fix mentioned -
only in the code comment - as a TODO. In the year since this was created, no visible effort has been

made to implement the permanent fix.

An analysis of the StyleElement.cpp file revealed that the only asset that gets touched is the HTML
styling. However, if the style sheets were written in a way to access the Document Object Model then
they could be liable for Cross Site Scripting. This was mentioned in this CVE issue. The fix involves an
authorization check and a $3,000 bounty was awarded for fixing this bug. It is important to fully inspect
all files, while style sheets aren’t normally prone to security vulnerabilities an issue like this one could

have put the system’s availability and integrity at risk.

Overall we believe that Chromium has a strong process for handling security and vulnerabilities in their
design, as well with their contribution requirements in the open source community. Where Chromium
could improve is in their communication after discovering root causes of vulnerabilities and identifying
the necessary fixes. The team has a pattern of implementing quick / temporary fixes that address the
problem at hand, but are still not considered to be the “best fix". When this happens, developers often
provide comments in the code detailing what a permanent fix would look like. Unfortunately, many of

these comments are rarely revisited in the future, and many remain unimplemented.

25

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-1743

