PM0214

The Cortex-M4 processor

2.3

231

2.3.2

Kys

Exception model

This section describes the exception model.

Exception states

Each exception is in one of the following states:

Inactive

Pending

Active

The exception is not active and not pending.

The exception is waiting to be serviced by the processor. An interrupt
request from a peripheral or from software can change the state of the
corresponding interrupt to pending.

An exception that is being serviced by the processor but has not

completed.

Note: An exception handler can interrupt the execution of another exception
handler. In this case both exceptions are in the active state.

Active and pending The exception is being serviced by the processor and there is a

Exception types

pending exception from the same source.

The exception types are:

Reset

NMI

Hard fault

Memory
management fault

Reset is invoked on power up or a warm reset. The exception model
treats reset as a special form of exception. When reset is asserted, the
operation of the processor stops, potentially at any point in an
instruction. When reset is deasserted, execution restarts from the
address provided by the reset entry in the vector table. Execution
restarts as privileged execution in Thread mode.

A NonMaskable Interrupt (NMI) can be signalled by a peripheral or
triggered by software. This is the highest priority exception other than
reset. It is permanently enabled and has a fixed priority of -2. NMls
cannot be:

e Masked or prevented from activation by any other exception
e Preempted by any exception other than Reset.

A hard fault is an exception that occurs because of an error during
exception processing, or because an exception cannot be managed by
any other exception mechanism. Hard faults have a fixed priority of -1,
meaning they have higher priority than any exception with configurable
priority.

A memory management fault is an exception that occurs because of a
memory protection related fault. The MPU or the fixed memory
protection constraints determines this fault, for both instruction and
data memory transactions. This fault is used to abort instruction
accesses to Execute Never (XN) memory regions.

PM0214 Rev 10 37/262

rcceee
Highlight

The Cortex-M4 processor

PM0214

Bus fault

Usage fault

SVcCall

PendSV

SysTick

Interrupt (IRQ)

A bus fault is an exception that occurs because of a memory related
fault for an instruction or data memory transaction. This might be from
an error detected on a bus in the memory system.

A usage fault is an exception that occurs in case of an instruction
execution fault. This includes:

¢ An undefined instruction
e An illegal unaligned access

. Invalid state on instruction execution

e An error on exception return.

The following can cause a usage fault when the core is configured to

report it:

¢ Anunaligned address on word and halfword memory access

e Division by zero

A supervisor call (SVC) is an exception that is triggered by the SVC
instruction. In an OS environment, applications can use SVC
instructions to access OS kernel functions and device drivers.

PendSV is an interrupt-driven request for system-level service. In an
OS environment, use PendSV for context switching when no other

exception is active.

A SysTick exception is an exception the system timer generates when
it reaches zero. Software can also generate a SysTick exception. In an
OS environment, the processor can use this exception as system tick.

An interrupt, or IRQ, is an exception signalled by a peripheral, or
generated by a software request. All interrupts are asynchronous to
instruction execution. In the system, peripherals use interrupts to
communicate with the processor.

Table 17. Properties of the different exception types

Exception IRQ Exception i Vector address A
number" | number™ type Al or offset(? G IALLY)
1 - Reset -3, the highest |0x00000004 Asynchronous
2 -14 NMI -2 0x00000008 Asynchronous
3 -13 Hard fault -1 0x0000000C -
4 12 mz’;‘:g“e’mem cauit | Configurable®) 0x00000010 Synchronous
5 111 Bus fault Configurable(® |0x00000014 ig;ﬁgﬁgﬁgjswxﬁgnpiﬁﬂfeecise
6 -10 Usage fault Configurable® | 0x00000018 Synchronous
7-10 - - - Reserved -
1 -5 SvCall Configurable(®) | 0x0000002C Synchronous
12-13 8 n - Reserved =
14 -2 PendSV Configurable(®) | 0x00000038 Asynchronous
38/262 PM0214 Rev 10 ﬁ

rcceee
Highlight

PM0214 The Cortex-M4 processor
Table 17. Properties of the different exception types (continued)
e e | oo™ | oy | VeS| Actuation
15 -1 SysTick Configurable®) | 0x0000003C Asynchronous
;g :vld 2: c:;je Interrupt (IRQ) Configurable) 2;;232?5(;040 e Asynchronous

1. To simplify the software layer, the CMSIS only uses IRQ numbers and therefore uses negative values for exceptions other
than interrupts. The IPSR returns the Exception number. For further information see Interrupt program status register on

page 22.

o s N

2.3.3

Ly

See Vector table on page 40 for more information.

See System handler priority registers (SHPRXx) on page 233.
See Interrupt priority register x (NVIC_IPRx) on page 215.
Increasing in steps of 4.

For an asynchronous exception other than reset, the processor can execute another
instruction between when the exception is triggered and when the processor enters the
exception handler.

Privileged software can disable the exceptions that Table 17 on page 38 shows as having
configurable priority. For further information, see:

e System handler control and state register (SHCSR) on page 235
e Interrupt clear-enable register x (NVIC_ICERXx) on page 211

For more information about hard faults, memory management faults, bus faults, and usage
faults, see Section 2.4: Fault handling on page 44.

Exception handlers

The processor handles exceptions using:

Interrupt Service Interrupts IRQO to IRQ81 are the exceptions handled by ISRs.
Routines (ISRs)

Fault handlers Hard fault, memory management fault, usage fault, bus fault are fault
exceptions handled by the fault handlers.

System handlers NMI, PendSV, SVCall SysTick, and the fault exceptions are all
system exceptions that are handled by system handlers.

PM0214 Rev 10 39/262

L REGISTERS MEMORY RAM
x0 0
4
-
——— | °
xSIl I and S type 12 bit
Instructions I Word
Hx:;z 32 32 ' - Byte addressing
Ib,1h,lw,Ibw,
“ lhu,sb.sh.sw

Load store architecture.

rcceee
Stamp

The Cortex-M4 processor

PM0214

234

40/262

Vector table

The vector table contains the reset value of the stack pointer, and the start addresses, also
called exception vectors, for all exception handlers. Figure 11 on page 40 shows the order
of the exception vectors in the vector table. The least-significant bit of each vector must be
1, indicating that the exception handler is Thumb code.

Figure 11. Vector table

Exception number IRQ number
255 239
18 2

17

16 0

15 -1

14 -2
13

12

11 -5
10

9

8

7

6 -10
5 =11
4 -12
3 -13
2 -14
1

Offset Vector
IRQ239
Ox03FC
0x004C
IRQ2
0x0048
| IRQ1
0x0044
| IRQO
0x0040
| Systick
0x003C
PendSV
0x0038
Reserved
[Reserved for Debug
SVCall
0x002C
Reserved
| Usage fault
0x0018 |
Bus fault
0x0014
Memory management fault
0x0010
Hard fault
0x000C
NMI
0x0008
Reset
0x0004
Initial SP value
0x0000

MS30018V1

On system reset, the vector table is fixed at address 0x00000000. Privileged software can
write to the VTOR to relocate the vector table start address to a different memory location, in
the range 0x00000080 to Ox3FFFFF80. For further information see Vector table offset

register (VTOR) on page 227.

PMO0214 Rev 10

3

rcceee
Highlight

rcceee
Highlight

rcceee
Highlight

rcceee
Highlight

rcceee
Highlight

rcceee
Highlight

rcceee
Highlight

rcceee
Highlight

PM0214

The Cortex-M4 processor

2.3.5

2.3.6

Kys

Exception priorities

Table 17 on page 38 shows that all exceptions have an associated priority, in details:

e Alower priority value indicating a higher priority

e Configurable priorities for all exceptions except Reset, Hard fault, and NMI.

If software does not configure any priorities, then all exceptions with a configurable priority
have a priority of 0. For information about configuring exception priorities see

e System handler priority registers (SHPRx) on page 233

e Interrupt priority register x (NVIC_IPRx) on page 215

Configurable priority values are in the range 0-15. This means that the Reset, Hard fault,
and NMI exceptions, with fixed negative priority values, always have higher priority than any
other exception.

For example, assigning a higher priority value to IRQ[0] and a lower priority value to IRQ[1]
means that IRQ[1] has higher priority than IRQ[O]. If both IRQ[1] and IRQ[0] are asserted,
IRQ[1] is processed before IRQ[O].

If multiple pending exceptions have the same priority, the pending exception with the lowest
exception number takes precedence. For example, if both IRQ[0] and IRQ[1] are pending
and have the same priority, then IRQ[0] is processed before IRQ[1].

When the processor is executing an exception handler, the exception handler is preempted
if a higher priority exception occurs. If an exception occurs with the same priority as the
exception being handled, the handler is not preempted, irrespective of the exception
number. However, the status of the new interrupt changes to pending.

Interrupt priority grouping

To increase priority control in systems with interrupts, the NVIC supports priority grouping.
This divides each interrupt priority register entry into two fields:

e Anupper field that defines the group priority

e Alower field that defines a subpriority within the group.

Only the group priority determines preemption of interrupt exceptions. When the processor

is executing an interrupt exception handler, another interrupt with the same group priority as
the interrupt being handled does not preempt the handler,

If multiple pending interrupts have the same group priority, the subpriority field determines
the order in which they are processed. If multiple pending interrupts have the same group
priority and subpriority, the interrupt with the lowest IRQ number is processed first.

For information about splitting the interrupt priority fields into group priority and subpriority,
see Application interrupt and reset control register (AIRCR) on page 228.

PM0214 Rev 10 41/262

rcceee
Highlight

The Cortex-M4 processor PM0214

2.3.7

42/262

Exception entry and return

Descriptions of exception handling use the following terms:

Preemption When the processor is executing an exception handler, an exception can
preempt the exception handler if its priority is higher than the priority of the
exception being handled. See Section 2.3.6: interrupt priority grouping for
more information about preemption by an interrupt.

When one exception preempts another, the exceptions are called nested
exceptions. See Exception entry on page 42 more information.

Return This occurs when the exception handler is completed, and:
e There is no pending exception with sufficient priority to be serviced

e The completed exception handler was not handling a late-arriving
exception.

The processor pops the stack and restores the processor state to the state it
had before the interrupt occurred. See Exception return on page 44 for more
information.

Tail-chaining This mechanism speeds up exception servicing. On completion of an
exception handler, if there is a pending exception that meets the
requirements for exception entry, the stack pop is skipped and control
transfers to the new exception handler.

Late-arriving This mechanism speeds up preemption. If a higher priority exception occurs
during state saving for a previous exception, the processor switches to
handle the higher priority exception and initiates the vector fetch for that
exception. State saving is not affected by late arrival because the state saved
is the same for both exceptions. Therefore the state saving continues
uninterrupted. The processor can accept a late arriving exception until the
first instruction of the exception handler of the original exception enters the
execute stage of the processor. On return from the exception handler of the
late-arriving exception, the normal tail-chaining rules apply.

Exception entry

Exception entry occurs when there is a pending exception with sufficient priority and either:
e The processor is in Thread mode

e The new exception is of higher priority than the exception being handled, in which case
the new exception preempts the original exception.

When one exception preempts another, the exceptions are nested.

Sufficient priority means the exception has more priority than any limits set by the mask
registers. For more information see Exception mask registers on page 23. An exception with
less priority than this is pending but is not handled by the processor.

When the processor takes an exception, unless the exception is a tail-chained or a late-
arriving exception, the processor pushes information onto the current stack. This operation
is referred as stacking and the structure of eight data words is referred as stack frame.

When using floating-point routines, the Cortex-M4 processor automatically stacks the
architected floating-point state on exception entry. Figure 12 on page 43 shows the Cortex-
M4 stack frame layout when floating-point state is preserved on the stack as the result of an
interrupt or an exception. Where stack space for floating-point state is not allocated, the

PM0214 Rev 10 ‘Yl

rcceee
Highlight

rcceee
Highlight

rcceee
Highlight

PM0214

The Cortex-M4 processor

Kys

stack frame is the same as that of Armv7-M implementations without an FPU. Figure 12 on
page 43 also shows this stack frame.

Figure 12. Cortex-M4 stack frame layout

! {aligner} | Pre-IRQ top of stack

FPSCR

S15

S14

S13

S12

S11

S10

S9

S8

S7

S6

S5

S4

S3

S2)) .
S1 : |
SO i Talignen] | }7 Pre-IRQ top of stack

xPSR Decreasing PSR

PC memory PC

LR address "
R12 R12

R3 R3

R2 R2

R1 R1

RO IRQ top of stack RO IRQ top of stack

Exception frame with Exception frame without
floating-point storage floating-point storage MS30019V1

Immediately after stacking, the stack pointer indicates the lowest address in the stack frame.
The alignment of the stack frame is controlled via the STKALIGN bit of the Configuration
Control Register (CCR).

The stack frame includes the return address. This is the address of the next instruction in
the interrupted program. This value is restored to the PC at exception return so that the
interrupted program resumes.

In parallel to the stacking operation, the processor performs a vector fetch that reads the
exception handler start address from the vector table. When stacking is complete, the
processor starts executing the exception handler. At the same time, the processor writes an
EXC_RETURN value to the LR. This indicates which stack pointer corresponds to the stack
frame and what operation mode the was processor was in before the entry occurred.

If no higher priority exception occurs during exception entry, the processor starts executing
the exception handler and automatically changes the status of the corresponding pending
interrupt to active.

If another higher priority exception occurs during exception entry, the processor starts
executing the exception handler for this exception and does not change the pending status
of the earlier exception. This is the late arrival case.

PM0214 Rev 10 43/262

rcceee
Highlight

rcceee
Highlight

rcceee
Highlight

rcceee
Highlight

Address

]

PC

Program
Memory

Instruction

r0

rl

r2

r3

Inc+4

Rm or imm
Rn

Rd (dest)
Rt (value to
mem)

Rd or Rt
>

r4

r5

rée

r7

Rm or Immediate.

Rn

5

Address

Data
Memory

Rt (value to save to memory

Value from AU

Value from memory

Figure 20: 3-address load and store CPU highlighting 3-address datapath

The Cortex-M4 processor PM0214

24

44/262

Exception return

Exception return occurs when the processor is in Handler mode and executes one of the
following instructions to load the EXC_RETURN value into the PC:

e an LDM or POP instruction that loads the PC

e an LDR instruction with PC as the destination

e a BXnstruction using any register.

EXC_RETURN is the value loaded into the LR on exception entry. The exception
mechanism relies on this value to detect when the processor has completed an exception
handler. The lowest five bits of this value provide information on the return stack and

processor mode. Table 18 shows the EXC_RETURN values with a description of the
exception return behavior.

All EXC_RETURN values have bits[31:5] set to one. When this value is loaded into the PC it
indicates to the processor that the exception is complete, and the processor initiates the
appropriate exception return sequence.

Table 18. Exception return behavior

EXC_RETURNI[31:0] Description

OXFFEFFFE1 Return to Handler mode, exception return uses non-floating-point state from
the MSP and execution uses MSP after return.
Return to Thread mode, exception return uses non-floating-point state from

AR MSP and execution uses MSP after return.
Return to Thread mode, exception return uses non-floating-point state from

OXFFFFFFFD the PSP and execution uses PSP after return.

OXFEFFFFEA Return to H_andler mode, exception return uses floating-point-state from MSP
and execution uses MSP after return.

OXFFFEFFEQ Return to T'hread mode, exception return uses floating-point state from MSP
and execution uses MSP after return.

OXFFEFFEED Return to T.hread mode, exception return uses floating-point state from PSP
and execution uses PSP after return.

Fault handling

Faults are a subset of the exceptions. For more information, see Exception model on
page 37. The following elements generate a fault:

e Abus error on:
— Aninstruction fetch or vector table load
— Adata access

e Aninternally-detected error such as an undefined instruction

e Attempting to execute an instruction from a memory region marked as Non-Executable
(XN).

e Aprivilege violation or an attempt to access an unmanaged region causing an MPU
fault.

PM0214 Rev 10 ‘Yl

	Blank Page
	Blank Page

