
PM0214 

2.3 

2.3.1 

2.3.2 

lt..y/ 

The Cortex-M4 processor 

Exception model 

This section describes the exception model. 

Exception states 

Each exception is in one of the following states: 

Inactive 

Pending 

Active 

The exception is not active and not pending. 

The exception is waiting to be serviced by the processor. An interrupt 

request from a peripheral or from software can change the state of the 

corresponding interrupt to pending. 

An exception that is being serviced by the processor but has not 

completed. 

Note: An exception handler can interrupt the execution of another exception 

handler. In this case both exceptions are in the active state. 

Active and pending The exception is being serviced by the processor and there is a 

pending exception from the same source. 

Exception types 

The exception types are: 

Reset 

NMI 

Hard fault 

Memory 

management fault 

Reset is invoked on power up or a warm reset. The exception model 

treats reset as a special form of exception. When reset is asserted, the 

operation of the processor stops, potentially at any point in an 

instruction. When reset is deasserted, execution restarts from the 
address provided by the reset entry in the vector table. Execution 

restarts as privileged execution in Thread mode. 

A NonMaskable Interrupt (NMI) can be signalled by a peripheral or 

triggered by software. This is the highest priority exception other than 

reset. It is permanently enabled and has a fixed priority of -2. NMls 

cannot be: 

• Masked or prevented from activation by any other exception

• Preempted by any exception other than Reset.

A hard fault is an exception that occurs because of an error during 

exception processing, or because an exception cannot be managed by 

any other exception mechanism. Hard faults have a fixed priority of -1, 
meaning they have higher priority than any exception with configurable 

priority. 

A memory management fault is an exception that occurs because of a 

memory protection related fault. The MPU or the fixed memory 

protection constraints determines this fault, for both instruction and 

data memory transactions. This fault is used to abort instruction 

accesses to Execute Never (XN) memory regions. 

PM0214 Rev 10 37/262 

rcceee
Highlight



The Cortex-M4 processor PM0214 

Exception 
number(1l

1 

2 

3 

4 

5 

6 

7-10

11 

12-13

14 

38/262 

Bus fault 

Usage fault 

SVCall 

PendSV 

SysTick 

A bus fault is an exception that occurs because of a memory related 

fault for an instruction or data memory transaction. This might be from 
an error detected on a bus in the memory system. 

A usage fault is an exception that occurs in case of an instruction 

execution fault. This includes: 

• An undefined instruction

• An illegal unaligned access

• Invalid state on instruction execution

• An error on exception return.

The following can cause a usage fault when the core is configured to 
report it: 

• An unaligned address on word and halfword memory access

• Division by zero

A supervisor call (SVC) is an exception that is triggered by the SVC 

instruction. In an OS environment, applications can use SVC 
instructions to access OS kernel functions and device drivers. 

PendSV is an interrupt-driven request for system-level service. In an 

OS environment, use PendSV for context switching when no other 

exception is active. 

A Sys Tick exception is an exception the system timer generates when 
it reaches zero. Software can also generate a Sys Tick exception. In an 

OS environment, the processor can use this exception as system tick. 

Interrupt (IRQ) An interrupt, or IRQ, is an exception signalled by a peripheral, or 

generated by a software request. All interrupts are asynchronous to 

instruction execution. In the system, peripherals use interrupts to 
communicate with the processor. 

Table 17. Properties of the different exception types 

IRQ Exception 
Priority 

Vector address 
Activation number(1) type or offset(2l

- Reset -3, the highest 0x00000004 Asynchronous 

-14 NMI -2 0x00000008 Asynchronous 

-13 Hard fault -1 0x0000000C -

-12 
Memory 

Configurable(3) 0x00000010 Synchronous 
management fault 

-11 Bus fault Configurable(3) 0x00000014 
Synchronous when precise 
Asynchronous when imprecise 

-10 Usage fault Configurable (3 > 0x00000018 Synchronous 

- - - Reserved -

-5 SVCall Configurable(3) 0x0000002C Synchronous 

- - - Reserved -

-2 PendSV Configurable(3) 0x00000038 Asynchronous 

PM0214 Rev 10 

rcceee
Highlight



PM0214 The Cortex-M4 processor 

Table 17. Properties of the different exception types (continued) 

Exception IRQ Exception 
Priority 

Vector address 
Activation 

number(1l number(1) type or offset(2l

15 -1 SysTick Configurable (3 l 0x0000003C Asynchronous 

16 and 0 and 
Interrupt (IRQ) Configurable (4 l

0x00000040 and 
Asynchronous above above above(5l

1. To simplify the software layer, the CMSIS only uses IRQ numbers and therefore uses negative values for exceptions other 
than interrupts. The IPSR returns the Exception number. For further information see Interrupt program status register on 
page 22. 

2. See Vector table on page 40 for more information. 

3. See System handler priority registers (SHPRx) on page 233. 

4. See Interrupt priority register x (NVIC_IPRx) on page 215. 

5. Increasing in steps of 4.

2.3.3 

lt..y/ 

For an asynchronous exception other than reset, the processor can execute another 
instruction between when the exception is triggered and when the processor enters the 
exception handler. 

Privileged software can disable the exceptions that Table 17 on page 38 shows as having 
configurable priority. For further information, see: 

• System handler control and state register (SHCSR) on page 235

• Interrupt clear-enable register x (NVIC_ICERx) on page 211

For more information about hard faults, memory management faults, bus faults, and usage 
faults, see Section 2.4: Fault handling on page 44. 

Exception handlers 

The processor handles exceptions using: 

Interrupt Service 

Routines (ISRs) 

Fault handlers 

System handlers 

Interrupts IRQO to IRQ81 are the exceptions handled by ISRs. 

Hard fault, memory management fault, usage fault, bus fault are fault 

exceptions handled by the fault handlers. 

NMI, PendSV, SVCall SysTick, and the fault exceptions are all 
system exceptions that are handled by system handlers. 

PM0214 Rev 10 39/262 



Load store architecture. 

rcceee
Stamp



The Cortex-M4 processor PM0214 

2.3.4 

40/262 

Vector table 

The vector table contains the reset value of the stack pointer, and the start addresses, also 
called exception vectors, for all exception handlers. Figure 11 on page 40 shows the order 
of the exception vectors in the vector table. The least-significant bit of each vector must be 
1, indicating that the exception handler is Thumb code. 

Figure 11. Vector table 

Exception number IRQ number Offset Vector 

255 239 IRQ239 
0x03FC 

0x004C 
18 2 IRQ2 

0x0048 
17 IRQ1 

0x0044 
16 0 IRQ0 

0x0040 
15 -1

0x003C 
Systick 

14 -2 PendSV 
0x0038 

13 Reserved 

12 Reserved for Debug 

11 -5 SVCall 
0x002C 

10 

9 
Reserved 

8 

7 

6 -10
0x0018 

Usage fault 

5 -11 Bus fault 
0x0014 

4 -12 
0x0010 

Memory management fault 

-13 Hard fault 
0x000C 

2 -14 NMI 
0x0008 

Reset 
0x0004 

Initial SP value 
0x0000 

MS30018V1 

On system reset, the vector table is fixed at address 0x00000000. Privileged software can 
write to the VTOR to relocate the vector table start address to a different memory location, in 
the range 0x00000080 to 0x3FFFFF80. For further information see Vector table offset 

register (VTOR) on page 227. 

PM0214 Rev 10 

rcceee
Highlight

rcceee
Highlight

rcceee
Highlight

rcceee
Highlight

rcceee
Highlight

rcceee
Highlight

rcceee
Highlight

rcceee
Highlight



PM0214 

2.3.5 

2.3.6 

lt..y/ 

The Cortex-M4 processor 

Exception priorities 

Table 17 on page 38 shows that all exceptions have an associated priority, in details: 

• A lower priority value indicating a higher priority

• Configurable priorities for all exceptions except Reset, Hard fault, and NMI.

If software does not configure any priorities, then all exceptions with a configurable priority 
have a priority of 0. For information about configuring exception priorities see 

• System handler priority registers (SHPRx) on page 233

• Interrupt priority register x (NVIC_IPRx) on page 215

Configurable priority values are in the range 0-15. This means that the Reset, Hard fault, 
and NMI exceptions, with fixed negative priority values, always have higher priority than any 

other exception. 

For example, assigning a higher priority value to IRQ[0] and a lower priority value to IRQ[1] 

means that IRQ[1] has higher priority than IRQ[0]. If both IRQ[1] and IRQ[0] are asserted, 

IRQ[1] is processed before IRQ[0]. 

If multiple pending exceptions have the same priority, the pending exception with the lowest 
exception number takes precedence. For example, if both IRQ[0] and IRQ[1] are pending 

and have the same priority, then IRQ[0] is processed before IRQ[1]. 

When the processor is executing an exception handler, the exception handler is preempted 
if a higher priority exception occurs. If an exception occurs with the same priority as the 

exception being handled, the handler is not preempted, irrespective of the exception 

number. However, the status of the new interrupt changes to pending. 

Interrupt priority grouping 

To increase priority control in systems with interrupts, the NVIC supports priority grouping. 

This divides each interrupt priority register entry into two fields: 

• An upper field that defines the group priority

• A lower field that defines a subpriority within the group.

Only the group priority determines preemption of interrupt exceptions. When the processor 
is executing an interrupt exception handler, another interrupt with the same group priority as 

the interrupt being handled does not preempt the handler, 

If multiple pending interrupts have the same group priority, the subpriority field determines 

the order in which they are processed. If multiple pending interrupts have the same group 

priority and subpriority, the interrupt with the lowest IRQ number is processed first. 

For information about splitting the interrupt priority fields into group priority and subpriority, 

see Application interrupt and reset control register (AIRCRJ on page 228. 

PM0214 Rev 10 41/262 

rcceee
Highlight



The Cortex-M4 processor PM0214 

2.3.7 

42/262 

Exception entry and return 

Descriptions of exception handling use the following terms: 

Preemption When the processor is executing an exception handler, an exception can 
preempt the exception handler if its priority is higher than the priority of the 

exception being handled. See Section 2.3.6: Interrupt priority grouping for 
more information about preemption by an interrupt. 

Return 

When one exception preempts another, the exceptions are called nested 
exceptions. See Exception entry on page 42 more information. 

This occurs when the exception handler is completed, and: 

• There is no pending exception with sufficient priority to be serviced

• The completed exception handler was not handling a late-arriving
exception.

The processor pops the stack and restores the processor state to the state it 

had before the interrupt occurred. See Exception return on page 44 for more 
information. 

Tail-chaining This mechanism speeds up exception servicing. On completion of an 
exception handler, if there is a pending exception that meets the 
requirements for exception entry, the stack pop is skipped and control 
transfers to the new exception handler. 

Late-arriving This mechanism speeds up preemption. If a higher priority exception occurs 
during state saving for a previous exception, the processor switches to 
handle the higher priority exception and initiates the vector fetch for that 
exception. State saving is not affected by late arrival because the state saved 

is the same for both exceptions. Therefore the state saving continues 
uninterrupted. The processor can accept a late arriving exception until the 
first instruction of the exception handler of the original exception enters the 
execute stage of the processor. On return from the exception handler of the 
late-arriving exception, the normal tail-chaining rules apply. 

Exception entry 

Exception entry occurs when there is a pending exception with sufficient priority and either: 

• The processor is in Thread mode

• The new exception is of higher priority than the exception being handled, in which case

the new exception preempts the original exception.

When one exception preempts another, the exceptions are nested. 

Sufficient priority means the exception has more priority than any limits set by the mask 
registers. For more information see Exception mask registers on page 23. An exception with 
less priority than this is pending but is not handled by the processor. 

When the processor takes an exception, unless the exception is a tail-chained or a late­
arriving exception, the processor pushes information onto the current stack. This operation 
is referred as stacking and the structure of eight data words is referred as stack frame. 

When using floating-point routines, the Cortex-M4 processor automatically stacks the 
architected floating-point state on exception entry. Figure 12 on page 43 shows the Cortex­
M4 stack frame layout when floating-point state is preserved on the stack as the result of an 
interrupt or an exception. Where stack space for floating-point state is not allocated, the 

PM0214 Rev 10 

rcceee
Highlight

rcceee
Highlight

rcceee
Highlight



PM0214 

lt..y/ 

The Cortex-M4 processor 

stack frame is the same as that of Armv7-M implementations without an FPU. Figure 12 on 

page 43 also shows this stack frame. 

I . . . � 

{aligner} 

FPSCR 

S15 

S14 

S13 

S12 

S11 

S10 

S9 

SB 

S7 

S6 

S5 

S4 

S3 

S2 

S1 

so 

xPSR 

PC 

LR 

R12 

R3 

R2 

R1 

RO 

Exception frame with 
floating-point storage 

Figure 12. Cortex-M4 stack frame layout 

f----- Pre-lRQ top of stack 

Decreasing 
memory 
address 

IRQ top of stack 

I . . . � 

{aligner} 

xPSR 

PC 

LR 

R12 

R3 

R2 

R1 

RO 

Exception frame without 
floating-point storage 

f----- Pre-lRQ top of stack 

IRQ top of stack 

MS30019V1 

Immediately after stacking, the stack pointer indicates the lowest address in the stack frame. 

The alignment of the stack frame is controlled via the STKALIGN bit of the Configuration 
Control Register (CCR). 

The stack frame includes the return address. This is the address of the next instruction in 

the interrupted program. This value is restored to the PC at exception return so that the 
interrupted program resumes. 

In parallel to the stacking operation, the processor performs a vector fetch that reads the 
exception handler start address from the vector table. When stacking is complete, the 

processor starts executing the exception handler. At the same time, the processor writes an 

EXC_RETURN value to the LR. This indicates which stack pointer corresponds to the stack 
frame and what operation mode the was processor was in before the entry occurred. 

If no higher priority exception occurs during exception entry, the processor starts executing 
the exception handler and automatically changes the status of the corresponding pending 

interrupt to active. 

If another higher priority exception occurs during exception entry, the processor starts 
executing the exception handler for this exception and does not change the pending status 

of the earlier exception. This is the late arrival case. 

PM0214 Rev 10 43/262 

rcceee
Highlight

rcceee
Highlight

rcceee
Highlight

rcceee
Highlight





The Cortex-M4 processor PM0214 

Exception return 

Exception return occurs when the processor is in Handler mode and executes one of the 
following instructions to load the EXC_RETURN value into the PC: 

• an LDM or POP instruction that loads the PC

• an LDR instruction with PC as the destination

• a BX instruction using any register.

EXC_RETURN is the value loaded into the LR on exception entry. The exception 
mechanism relies on this value to detect when the processor has completed an exception 
handler. The lowest five bits of this value provide information on the return stack and 
processor mode. Table 18 shows the EXC_RETURN values with a description of the 
exception return behavior. 

All EXC_RETURN values have bits[31 :5] set to one. When this value is loaded into the PC it 
indicates to the processor that the exception is complete, and the processor initiates the 
appropriate exception return sequence. 

Table 18. Exception return behavior 

EXC_RETURN[31 :OJ Description 

0xFFFFFFF1 
Return to Handler mode, exception return uses non-floating-point state from 

the MSP and execution uses MSP after return. 

0xFFFFFFF9 
Return to Thread mode, exception return uses non-floating-point state from 
MSP and execution uses MSP after return. 

0xFFFFFFFD 
Return to Thread mode, exception return uses non-floating-point state from 
the PSP and execution uses PSP after return. 

0xFFFFFFE1 
Return to Handler mode, exception return uses floating-point-state from MSP 

and execution uses MSP after return. 

0xFFFFFFE9 
Return to Thread mode, exception return uses floating-point state from MSP 

and execution uses MSP after return. 

0xFFFFFFED 
Return to Thread mode, exception return uses floating-point state from PSP 

and execution uses PSP after return. 

2.4 Fault handling 

44/262 

Faults are a subset of the exceptions. For more information, see Exception model on 

page 37. The following elements generate a fault: 

• A bus error on:

An instruction fetch or vector table load 

A data access 

• An internally-detected error such as an undefined instruction

• Attempting to execute an instruction from a memory region marked as Non-Executable

(XN).

• A privilege violation or an attempt to access an unmanaged region causing an MPU
fault.

PM0214 Rev 10 


	Blank Page
	Blank Page



