
| 1

SysTick

 24-bit System Timer
 Counts down from the reload value to zero
 The maximum value that can be loaded to the load

register of system timer is 2^(24-1)
 Generates SysTick interrupts
 System Timer can be used to execute task periodically

such as periodic polling and Scheduler

References:
STM32 Cortex®-M4 MCUs and MPUs programming manual
Book: Embedded Systems with ARM CORTEX-M Microcontrollers in Assembly Language and C (Dr. Yifeng Zhu)

| 2

SysTick Registers

0121
6

Bit 0 – Enable
Bit 1 – (Tick) Interrupt Enable
Bit 2 – Clock Source
Bit 16 – Count Flag

Reserved Bits 0 -23

Bit 0-23 – Current Value

SysTick current value register (SysTick->VAL)

SysTick control and status register (SysTick->CTRL)

References:
STM32 Cortex®-M4 MCUs and MPUs programming manual

| 3

SysTick Registers

Reserved Bits 0 -23

Bit 0-23 – Reload Value

SysTick Reload value register (SysTick->LOAD)

Reserved Bits 0 -23

Bit 0-23 – Calibration Value
Bit 30 – Skew Flag
Bit 31 – No Reference Flag

SysTick calibration value register (SysTick> CALIB)
3
0

3
1

In STM32L4 Processors, External Clock is
System Internal Clock divided by 8

References:
STM32 Cortex®-M4 MCUs and MPUs programming manual

| 4

How does SysTick work?

References:
STM32 Cortex®-M4 MCUs and MPUs programming manual
Book: Embedded Systems with ARM CORTEX-M Microcontrollers in Assembly Language and C (Dr. Yifeng Zhu)

With 80 MHz System clock, if 1 Interrupt is desired at 1
second time interval then reload value must be

Reload Value = (Time Period / System Clock Period) – 1
Reload Value =(1 Second / (1 / 80 MHz)) – 1
Reload Value = 80,000,000 – 1 = 79,999,999

| 5

How does SysTick work?

References:
STM32 Cortex®-M4 MCUs and MPUs programming manual
Book: Embedded Systems with ARM CORTEX-M Microcontrollers in Assembly Language and C (Dr. Yifeng Zhu)

| 6

Used bits

Value size (in bits)

Description of
meaning of each bit
in a value/function

Register Description

| 7

SysTick Simulation

 Create a project in Cube IDE

| 8

1) File>New>STM32 Project

2) Board Selector>Nucleo-L476RG

| 9

3) Select Nucleo Board>Next 4) Name the project SimSys and Finish

5) YES! To defaults!

| 10

ioc – I/O Configuration File

Graphical configuration settings:
1) pin assignments – On Board LED – Port A, Pin 5
2) peripheral configurations – UART – printing to screen
3) much, much more.

UART setup for
you

| 11

1) Download and systick_sim.zip
2) Drag systick_simulator.c into Src directory – make a copy
3) Repeat for main.c
4) Drag systick_simulator.h into Inc directory

| 12

1) Compile and run your project – play button on right side.
2) Hammer just to compile and bug to debug.
3) Open a terminal program and communicate with the board. Options:

1) Baud rate: 115200.
2) Built into CubeIDE (Window > Show view > Terminal)
3) Putty, TeraTerm (Windows)
4) Screen (MacOS).

4) Compile and run again to see test results.
5) Follow instructions in main.c to simulate the systick hardware.

| 13

ioc – I/O Configuration File

Graphical configuration settings:
1) pin assignments – On Board LED – Port A, Pin 5
2) peripheral configurations – UART – printing to screen
3) much, much more.

On Board LED
setup for you

| 14

1) Look at the code in the while(1) loop
2) Compile and run your project – play button on right side.
3) Test 5, observe LED flashing on/off every second.
4) Note – user code between comments.
5) Let’s change SysTick and see what happens to HAL_Delay(1000)

| 15

SysTick – setting of the registers

Starts in main,
With HAL_Init()

Select HAL_Init() and press F3 - stm32l4xx_hal.c

| 16

HAL_InitTick()

Next, HAL_SYSTICK_Config() – press F3 again

| 17

HAL_SYSTICK_Config() in stm32l4xx_hal_cortex

Next, SysTick_Config() – press F3 again

| 18

Core_cm4.h

Test 6 in main.c. Create a variable like ticks.
Set it equal to something other than 80000.
Use the SysTick->LOAD to set the reload register.
What happens?

| 19

Summary

