RIT Rochester Institute of Technology | 1

24-bit System Timer
Counts down from the reload value to zero

The maximum value that can be loaded to the load
register of system timer is 2*(24-1)

Generates SysTick interrupts

System Timer can be used to execute task periodically
such as periodic polling and Scheduler

References:
STM32 Cortex®-M4 MCUs and MPUs programming manual
Book: Embedded Systems with ARM CORTEX-M Microcontrollers in Assembly Language and C (Dr. Yifeng Zhu)

RIT Rochester Institute of Technology | 2

SysTick Registers

SysTick control and status register (SysTick->CTRL)

Bit 0 — Enable

Bit 1 — (Tick) Interrupt Enable
Bit 2 — Clock Source

Bit 16 — Count Flag

SysTick current value reqgister (SysTick->VAL)

Reserved Bits 0 -23

Blt 0'23 - Current Value References:

STM32 Cortex®-M4 MCUs and MPUs programming manual

RIT Rochester Institute of Technology | 3

SysTick Registers

SysTick Reload value register (SysTick->LOAD)

Reserved Bits 0 -23

Bit 0-23 — Reload Value

SysTick calibration value register (SysTick> CALIB)

; Reserved Bits 0 -23

In STM32L4 Processors, External Clock is

Bit 0-23 — Calibration Value System Internal Clock divided by 8

Bit 30 — Skew Flag
Bit 31 — No Reference Flag Reforences:

STM32 Cortex®-M4 MCUs and MPUs programming manual

RIT

Rochester Institute of Technology | 4

How does SysTick work?

Reload Value

YES

Generate Interrupt
and Reload the
Counter value again

L

System Clock
(80 MHz)

NO

Keep
decrementing
value of the
counter

References:
STM32 Cortex®-M4 MCUs and MPUs programming manual
Book: Embedded Systems with ARM CORTEX-M Microcontrollers in Assembly Language and C (Dr. Yifeng Zhu)

System
Clock
A Period
Reload Value ! i
=7

Counter

o
\SysTick me

-« SysTick Interrupt Time Period —» Interrupt
(Reload Value + 1) x System Clock Period

With 80 MHz System clock, if 1 Interrupt is desired at 1
second time interval then reload value must be

Reload Value = (Time Period / System Clock Period) — 1
Reload Value =(1 Second / (1 /80 MHz)) — 1
Reload Value = 80,000,000 — 1 = 79,999,999

RIT Rochester Institute of Technology | 5

How does SysTick work?

Reload Value Register (SYST->LOAD)

Bit 0-23 — Reload Value

Reload Value

Control and Status Register (SYST->CTRL) [

Logical
AND
References: Sys“l"lck
STM32 Cortex®-M4 MCUs and MPUs programming manual Interrupt

Book: Embedded Systems with ARM CORTEX-M Microcontrollers in Assembly Language and C (Dr. Yifeng Zhu)

RIT Rochester Institute of Technology | 6

Register Description

The SysTick SYST_CSR register enables the SysTick features. The register resets to
0x00000000, or to 0x00000004 if your device does not implement a reference clock. See the
register summary in Table 4-32 for its attributes. The bit assignments are:

31 17 16 15 3210

Reserved | | Reserved 0|0]|0
LBEd htS I COUNTFLAG CLKSOURCE
> TICKINT
ENABLE

Table 4-33 SysTick SYST_CSR register bit assignments

Value size (in bits) 3

Bits Name “Function
[31:17] | - Reserved.
[16] COUNTFLAG | Returns 1 if timer counted to 0 since last time this was read.
[15:3] |- Reserved.
[2] CLKSOURCE | Indicates the clock source:

0 = external clock
1 = processor clock.

\ 4

[1] TICKINT Enables SysTick exception request:
D = g d 0 = counting down to zero does not assert the SysTick exception request
ptlm 1 = counting down to zero asserts the SysTick exception request.
o o Software can use COUNTFLAG to determine if SysTick has ever counted to zero.
meaning of each hit
[0] ENABLE Enables the counter:

In d VallEﬁlMIm 0 = counter disabled

1 = counter enabled.

RIT Rochester Institute of Technology | 7

SysTick Simulation

= Create a project in Cube IDE

Rochester Institute of Technology | 8

RIT

1) File>New>STM32 Project

[I3 STM32CubelDEWorkspace - STM32CubelDE
Search Project Run Window Help & Hello Rick

File Edit Source Refactor Navigate
£% Makefile Project with Existing Code

New Alt+Shift+N >
€ C/C++ Project

Open File...
3 Open Projects from File System... & STM32 Project

2) Board Selector>Nucleo-L476RG

MCU/MPU Selector Board Selector Example Selector Cross Sel
Board Filters B

w @ B O

Commercial nucleo-147
Part Number Lhisic
NUCLEO-L476RG

Q || v]] -

W

RIT

3) Select Nucleo Board>Next

Boards List: 1 item T4 Export

Overview Commerci... Type Marketi... Unit Pri... Mounte...

'1") ';ﬁ,?.!

'\‘ NUCLEO-L... Nucleo-64 Active
ik
g

< Back Finish Cancel

5) YES! To defaults!

I DT LG I LIS

m Board Project Options:

Initialize all peripherals with their default Mode ?

Rochester Institute of Technology | ©

4) Name the project SimSys and Finish

[TF sTM32 Project] X

Setup STM32 project

Project
Project Name: HALBIinK
B Use default location
C:/Users/rcceee/OneDrive - rit.edu/Documents/a Classes/a! Browse

Options
Targeted Language
Oc Oc+
Targeted Binary Type
© Executable O Static Library

Targeted Project Type
© sTM32Cube O Empty

@ < Back Next > Cancel

RIT Rochester Institute of Technology | 10

ioc — I/O Configuration File

UART setup for
you

USART_RX |[FaERNies

USART_TX

LD2 [green Led] [FEERNES

Graphical configuration settings:

1) pin assignments — On Board LED — Port A, Pin 5

2) peripheral configurations — UART — printing to screen
3) much, much more.

RIT Rochester Institute of Technology | 11

1) Download and systick_sim.zip
2) Drag systick_simulator.c into Src directory — make a copy
3) Repeat for main.c

4) Drag systick simulator.h into Inc directory

v [T systick_sim (ir
, 4% Binaries
> [Includes
v (3 Core
v (= Inc
> |h] main.h
> b stm32xx_hal_conf.h
> [h] stm32ldxx_it.h
» Lh| systick_simulator.h
v &= Src
> |1€] main.c
> €] stm32Kxx_hal_msp.c
> | stm32Mdxx_it.c
> €] syscalls.c
> |€] sysmem.c
> g system_stm32ldxx.c
» L] systick_simulator.c
> (= Startup
> (2 Drivers
» = Debug
1 STM32L476RGTX_FLASH.Id
1w STM32L476RGTX_RAM.Id
[systick_sim.ioc
systick_sim Debug.launch

RIT Rochester Institute of Technology | 12

{2 wkx lab2 JLink Debugging - systick_sim/Core/Src/main.c - STM32CubelDE

File Edit Source Refactor Navigate Search Project Run Window Help
i R~ @il B:vw G-~ -iH-0-Q
| f) v v | =# 0

1) Compile and run your project — play button on right side.
2) Hammer just to compile and bug to debug.
3) Open a terminal program and communicate with the board. Options:
1) Baud rate: 115200.
2) Built into CubelDE (Window > Show view > Terminal)
3) Putty, TeraTerm (Windows)
4) Screen (MacQOS).
4) Compile and run again to see test results.
5) Follow instructions in main.c to simulate the systick hardware.

RIT Rochester Institute of Technology | 13

ioc — I/O Configuration File

On Board LED
setup for you

USART_RX |[FaERNies

USART_TX

LD2 [green Led] [FEERNES

Graphical configuration settings:

1) pin assignments — On Board LED — Port A, Pin 5

2) peripheral configurations — UART — printing to screen
3) much, much more.

RIT

/* Infinite loop */

/* USER CODE BEGIN WHILE */

while (1)

-

shing on-board LED
t the LED pin (PAS)
P

1 -
HAL GPIO TogglePin(GPIOR, GPIO PIN 5);

nw W

M rh

+ T
il

a

()

h

F

(

C

£

’_J

m W

/ ‘/' -

i
n

// Wait for 1000 milliseconds (1 second)

HAL Delay (J';

Rochester Institute of Technology | 14

1) Look at the code in the while(1) loop

2) Compile and run your project — play button on right side.

3) Test 5, observe LED flashing on/off every second.

4) Note — user code between comments.

5) Let’s change SysTick and see what happens to HAL Delay(1000)

RIT Rochester Institute of Technology | 15

SysTick — setting of the registers

8Y i
. 90= int main(void)
91 {
92

93 /* USER CODE BEGIN 1 */ StartS |n maln,

94

22 /* USER CODE END 1 */) With HAL_Init()

97 /* MCU Configuration------=c-ecmcmmcmc e e e e e e e

99 /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
20 HAL_Init();

Select HAL Init() and press F3 - stm32l4xx_hal.c

(+) Configure the time base source to have 1lms time base with a dedicated
Tick interrupt priority.

(++) SysTick timer is used by default as source of time base, but user
can eventually implement his proper time base source (a general purpose
timer for example or other time source), keeping in mind that Time base
duration should be kept 1ms since PPP_TIMEOUT_VALUEs are defined and
handled in milliseconds basis.

(++) Time base configuration function (HAL_InitTick ()) is called automatically
at the beginning of the program after reset by HAL_Init() or at any time
when clock is configured, by HAL_RCC_ClockConfig().

RIT Rochester Institute of Technology | 16

HAL_InitTick()

./tx
* @brief This function configures the source of the time base:
" The time source is configured to have 1ms time base with a dedicated
* Tick interrupt priority.
* @note This function is called automatically at the beginning of program after
- reset by HAL_Init() or at any time when clock is reconfigured by HAL_RCC_ClockConfig().
* @note In the default implementation, SysTick timer is the source of time base.
¥ It is used to generate interrupts at regular time intervals.
- Care must be taken if HAL_Delay() is called from a peripheral ISR process,
- The SysTick interrupt must have higher priority (numerically lower)
o than the peripheral interrupt. Otherwise the caller ISR process will be blocked.
- The function is declared as __weak to be overwritten in case of other
= implementation in user file.

* @param TickPriority Tick interrupt priority.
@retval HAL status

*

e
' _weak HAL_StatusTypeDef [[TYMETSR4Eta % uint32 t TickPriority)
{

HAL_StatusTypeDef status = HAL_OK;

/* Check uwTickFreq for MisraC 2012 (even if uwTickFreq is a enym type that doesn't take the value zero)*/
if ((uint32_t)uwTickFreq != @U)

/*Configure the SysTick to have interrupt in 1lms time basis*/
if (HAL_SYSTICK Config(SystemCoreClock / (1@@eU / (uint32_t)uwTickFreq)) == @U)

Next, HAL SYSTICK_ Config() — press F3 again

RIT

Rochester Institute of Technology | 17

HAL_SYSTICK Config() in stm32l4xx_hal cortex

/x

*
*
*
*
*
*

*

@brief Initialize the System Timer with interrupt enabled and start the System Tick Timer (SysTick):
Counter is in free running mode to generate periodic interrupts.
@param TicksNumb: Specifies the ticks Number of ticks between two interrupts.
@retval status: - @ Function succeeded.
- 1 Function failed.

/

'uint32_t HAL_SYSTICK Config(uint32_t TicksNumb)

{
¥

return SysTick_Config(TicksNumb);

Next, SysTick Config() — press F3 again

RIT Rochester Institute of Technology | 18

Core_cm4.h

__STATIC_INLINE uint32_t SYptd &N Y uint32_t ticks)

{
if ((ticks - 1UL) > SysTick_LOAD_RELOAD Msk)
{
return (1UL); /* Reload value impossible */
}
SysTick->LOAD = (uint32_t)(ticks - 1UL); /* set reload register */
NVIC_SetPriority (SysTick _IRQn, (1UL << _ NVIC_PRIO BITS) - 1UL); /* set Priority for Systick Interrupt */
SysTick->VAL = @uL; /* Load the SysTick Counter Value */

SysTick->CTRL = SysTick CTRL_CLKSOURCE Msk |

SysTick_CTRL_TICKINT Msk |

SysTick_CTRL_ENABLE_Msk; /* Enable SysTick IRQ and SysTick Timer */
return (@UL); /* Function successful */

}

Test 6 in main.c. Create a variable like ticks.

Set it equal to something other than 80000.

Use the SysTick->LOAD to set the reload register.
What happens?

RIT Rochester Institute of Technology | 19

Summary

The primary purpose of this code is to set up a periodic event, usually a SysTick interrupt. The
actual time period of this event depends entirely on the system’s clock frequency.

The formula is:

num_ticks

Time Period —
tme Tero System Clock Frequency

Example Scenario:
Let's assume your microcontroller's system clock (SYSCLK) is running at 80 MHz.

* Clock Frequency: 80,000,000 Hz
* Number of Ticks: 80,000

80,000

80. 000, 000 Hz = 0.001 seconds — 1 millisecond

Time Period —

