Introduction to Distributed Systems

Material adapted from Distributed Systems. Concepts & Design, George
Coulouris, et al. and Engineering Distributed Objects, Wolfgang
Emmerich

Outline

= What is a Distributed System?

= Examples of Distributed Systems

= Distributed System Requirements

= Transparency in Distributed System

SWEN-342 Engineering of Concurrent & Distributed Software Systems

!'_ What is a Distributed System?

What is a Distributed System?

= A system in which hardware or software components
located at networked computers communicate and
coordinate their actions only by passing messages.
(Coulouris)

= A distributed system is a collection of autonomous hosts
that that are connected through a computer network. Each
host executes components and operates a distribution
middleware, which enables the components to coordinate
their activities in such a way that users perceive the system
as a single, integrated computing facility. (Emmerich)

SWEN-342 Engineering of Concurrent & Distributed Software Systems

What is a Distributed System?

@ SWEN-342 Engineering of Concurrent & Distributed Software Systems

Centralized System Characteristics

= One component with non-autonomous parts
= Component shared by users all the time

= All resources accessible

= Software runs in a single process

= Single Point of control

= Single Point of failure

SWEN-342 Engineering of Concurrent & Distributed Software Systems

Distributed System Characteristics

= Multiple autonomous components
= Components are not shared by all users
= Resources may not be accessible

= Software runs in concurrent processes on different
Processors

= Multiple Points of control
= Multiple Points of failure

SWEN-342 Engineering of Concurrent & Distributed Software Systems

Key Terms

= Resources — things shared in a distributed system
= hardware (disks, printers)
= software (files, databases, data objects)

= Server — program or process that performs services in
response to requests from other processes.

= Client — process that makes requests of a server by
Invoking an operation.

= Remote Invocation — complete send and response
sequence

= Servers & Clients are software processes

SWEN-342 Engineering of Concurrent & Distributed Software Systems

!'_ Examples of Distributed Systems

. VY
2 . -

Boeing 777 Configuration Management

-

SWEN-342 Engineering of Concurrent & Distributed Software Systems

Problems to be solved

= Scale
= 3,000,000 parts per aircraft
= Configuration of every aircraft is different

= CAA regulations demand that records are kept for every single part
of aircraft

= Aircraft evolve during maintenance

= Boeing produce 500 aircraft per year

= Configuration database grows by 1.5 billion parts each year
= Projected life of each aircraft 30 years

= 45,000 engineers need on-line access to engineering data

SWEN-342 Engineering of Concurrent & Distributed Software Systems

Problems to be solved (cont'd)

= COTS Integration
= Existing IT infrastructure was no longer appropriate
= Boeing could not afford to build required IT
Infrastructure from scratch
= Components were purchased from several different
specialized vendors
= relational database technology

= enterprise resource planning
= computer aided project planning

= Components needed to be integrated

SWEN-342 Engineering of Concurrent & Distributed Software Systems

Problems to be solved (cont'd)

Heterogeneity

20 Sequent database machines as servers for the
engineering data

200 UNIX application servers
NT and UNIX workstations for engineers

SWEN-342 Engineering of Concurrent & Distributed Software Systems

Why distributed object technology

= Object wrapping of COTS
= Resolution of distribution at high level of abstraction
= Resolution of heterogeneity

= Scalability

SWEN-342 Engineering of Concurrent & Distributed Software Systems

!'_ Distributed System Requirements

Requirements

= Integration of new, legacy and components off-the-shelf
= Legacy components might not need to be re-engineered
= COTS cannot be modified
= Heterogeneity of
= hardware platforms
= operating systems
= hetworks
= programming languages
= Construction of distributed systems

SWEN-342 Engineering of Concurrent & Distributed Software Systems

Common Requirements/Challenges

= What are we trying to achieve when we construct a distributed system?
= Certain requirements are common to many distributed systems

= Heterogeneity

= Resource Sharing

= Openness

= Security

= Concurrency

= Scalability

= Fault Tolerance

= [ransparency

SWEN-342 Engineering of Concurrent & Distributed Software Systems

Resource Sharing

= Ability to use any hardware, software or data anywhere in
the system.

= Resource manager controls access, provides naming
scheme and controls concurrency.

= Resource sharing model (e.g. client/ server or object-
based) describing how

= resources are provided,
= they are used and
= provider and user interact with each other.

SWEN-342 Engineering of Concurrent & Distributed Software Systems

Openness

= Openness Is concerned with extensions and improvements
of distributed systems.

= Detailed interfaces of components need to be published.

= New components have to be integrated with existing
components.

= Differences in data representation of interface types on
different processors (of different vendors) have to be
resolved.

SWEN-342 Engineering of Concurrent & Distributed Software Systems

Concurrency

= Components in distributed systems are executed in
concurrent processes.

= Components access and update shared resources (e.g.
variables, databases, device drivers).

= Integrity of the system may be violated if concurrent
updates are not coordinated.

= Lost updates
= Inconsistent analysis

SWEN-342 Engineering of Concurrent & Distributed Software Systems

Fault Tolerance

s Hardware, software and networks fail!

= Distributed systems must maintain availability even at low
levels of hardware/software/network reliability.

= Fault tolerance is achieved by
= recovery
= redundancy

SWEN-342 Engineering of Concurrent & Distributed Software Systems

Scalability

= Adoption of distributed systems to
= accommodate more users
= respond faster (this is the hard one)
= Usually done by adding more and/or faster processors.

= Components should not need to be changed when scale of
a system increases.

= Design components to be scalable!

SWEN-342 Engineering of Concurrent & Distributed Software Systems

!'_ Transparency in Distributed Systems

Transparency

= Distributed systems should be perceived by users and
application programmers as a whole rather than as a
collection of cooperating components.

= Transparency has different dimensions that represent
various properties distributed systems should have.

SWEN-342 Engineering of Concurrent & Distributed Software Systems

Location Transparency

= Enables information objects to be accessed without
knowledge of their location.

= Example: File system operations in NFS
= Example: Pages in the Web
= Example: Tables in distributed databases

SWEN-342 Engineering of Concurrent & Distributed Software Systems

Distribution Transparency

—

>f |
[|

@ SWEN-342 Engineering of Concurrent & Distributed Software Systems

Access Transparency

= Enables local and remote information objects to be
accessed using identical operations.

= Example: File system operations in NFS.
= Example: Navigation in the Web.
= Example: SQL Queries

SWEN-342 Engineering of Concurrent & Distributed Software Systems

Concurrency Transparency

= Enables several processes to operate concurrently using
shared information objects without interference between
them.

= Example: NFS
= Example: Automatic teller machine network
= Example: Database management system

SWEN-342 Engineering of Concurrent & Distributed Software Systems

Replication Transparency

= Enables multiple instances of information objects to be
used to increase reliability and performance without
knowledge of the replicas by users or application programs

= Example: Distributed DBMS
= Example: Mirroring Web Pages.

SWEN-342 Engineering of Concurrent & Distributed Software Systems

Failure Transparency

s Enables the concealment of faults

= Allows users and applications to complete their tasks
despite the failure of other components.

= Example: Database Management System

SWEN-342 Engineering of Concurrent & Distributed Software Systems

Migration Transparency

= Allows the movement of information objects within a
system without affecting the operations of users or
application programs

= Example: NFS
= Example: Web Pages

SWEN-342 Engineering of Concurrent & Distributed Software Systems

Performance Transparency

= Allows the system to be reconfigured to improve
performance as loads vary.

= Example: Distributed make.

SWEN-342 Engineering of Concurrent & Distributed Software Systems

Scaling Transparency

= Allows the system and applications to expand in scale

without change to the system structure or the application
algorithms.

= Example: World-Wide-Web
= Example: Distributed Database

SWEN-342 Engineering of Concurrent & Distributed Software Systems

Distribution Transparency

—

>f |
[|

@ SWEN-342 Engineering of Concurrent & Distributed Software Systems

Two Views of Transparency

= The system should hide its distributed nature, programs
running on a multiple-computer system appear no different
from a single-computer system.

= The system should not hide its distributed nature. The
programs are aware of the multiple computers in the
system.

= When designing distributed applications we need to favor

the second view.
(see: “A Note on Distributed Computing”, Jim Waldo, et al.)

SWEN-342 Engineering of Concurrent & Distributed Software Systems

Key Points

= What is a Distributed System

= Adoption of Distributed Systems is driven by Non-
Functional Requirements

= Distribution needs to be transparent to users and
application designers

= Transparency has several dimensions
= Transparency dimensions depend on each other

SWEN-342 Engineering of Concurrent & Distributed Software Systems

