
Introduction to Distributed Systems

Material adapted from Distributed Systems: Concepts & Design, George
Coulouris, et al. and Engineering Distributed Objects, Wolfgang
Emmerich

SWEN-342 Engineering of Concurrent & Distributed Software Systems

Outline

 What is a Distributed System?

 Examples of Distributed Systems

 Distributed System Requirements

 Transparency in Distributed System

What is a Distributed System?

SWEN-342 Engineering of Concurrent & Distributed Software Systems

What is a Distributed System?

 A system in which hardware or software components

located at networked computers communicate and

coordinate their actions only by passing messages.

(Coulouris)

 A distributed system is a collection of autonomous hosts

that that are connected through a computer network. Each

host executes components and operates a distribution

middleware, which enables the components to coordinate

their activities in such a way that users perceive the system

as a single, integrated computing facility. (Emmerich)

SWEN-342 Engineering of Concurrent & Distributed Software Systems

Hostn-1

Hostn

Host2

Host1

What is a Distributed System?

Middleware
Middleware

Middleware
Middleware

Network Operating System
Network Operating System

Network Operating System
Network Operating System

Hardware
Hardware

Hardware
Hardware

Component1 Componentn
Component1 Componentn

Component1 Componentn
Component1 Componentn

Network

SWEN-342 Engineering of Concurrent & Distributed Software Systems

Centralized System Characteristics

 One component with non-autonomous parts

 Component shared by users all the time

 All resources accessible

 Software runs in a single process

 Single Point of control

 Single Point of failure

SWEN-342 Engineering of Concurrent & Distributed Software Systems

Distributed System Characteristics

 Multiple autonomous components

 Components are not shared by all users

 Resources may not be accessible

 Software runs in concurrent processes on different

processors

 Multiple Points of control

 Multiple Points of failure

SWEN-342 Engineering of Concurrent & Distributed Software Systems

Key Terms

 Resources – things shared in a distributed system

 hardware (disks, printers)

 software (files, databases, data objects)

 Server – program or process that performs services in
response to requests from other processes.

 Client – process that makes requests of a server by
invoking an operation.

 Remote Invocation – complete send and response
sequence

 Servers & Clients are software processes

Examples of Distributed Systems

SWEN-342 Engineering of Concurrent & Distributed Software Systems

Boeing 777 Configuration Management

SWEN-342 Engineering of Concurrent & Distributed Software Systems

Problems to be solved

 Scale

 3,000,000 parts per aircraft

 Configuration of every aircraft is different

 CAA regulations demand that records are kept for every single part

of aircraft

 Aircraft evolve during maintenance

 Boeing produce 500 aircraft per year

 Configuration database grows by 1.5 billion parts each year

 Projected life of each aircraft 30 years

 45,000 engineers need on-line access to engineering data

SWEN-342 Engineering of Concurrent & Distributed Software Systems

Problems to be solved (cont’d)

 COTS Integration

 Existing IT infrastructure was no longer appropriate

 Boeing could not afford to build required IT
infrastructure from scratch

 Components were purchased from several different
specialized vendors

 relational database technology

 enterprise resource planning

 computer aided project planning

 Components needed to be integrated

SWEN-342 Engineering of Concurrent & Distributed Software Systems

Problems to be solved (cont’d)

Heterogeneity

20 Sequent database machines as servers for the

engineering data

200 UNIX application servers

NT and UNIX workstations for engineers

SWEN-342 Engineering of Concurrent & Distributed Software Systems

Why distributed object technology

 Object wrapping of COTS

 Resolution of distribution at high level of abstraction

 Resolution of heterogeneity

 Scalability

Distributed System Requirements

SWEN-342 Engineering of Concurrent & Distributed Software Systems

Requirements

 Integration of new, legacy and components off-the-shelf

 Legacy components might not need to be re-engineered

 COTS cannot be modified

 Heterogeneity of

 hardware platforms

 operating systems

 networks

 programming languages

 Construction of distributed systems

SWEN-342 Engineering of Concurrent & Distributed Software Systems

Common Requirements/Challenges

 What are we trying to achieve when we construct a distributed system?

 Certain requirements are common to many distributed systems

 Heterogeneity

 Resource Sharing

 Openness

 Security

 Concurrency

 Scalability

 Fault Tolerance

 Transparency

SWEN-342 Engineering of Concurrent & Distributed Software Systems

Resource Sharing

 Ability to use any hardware, software or data anywhere in

the system.

 Resource manager controls access, provides naming

scheme and controls concurrency.

 Resource sharing model (e.g. client/ server or object-

based) describing how

 resources are provided,

 they are used and

 provider and user interact with each other.

SWEN-342 Engineering of Concurrent & Distributed Software Systems

Openness

 Openness is concerned with extensions and improvements

of distributed systems.

 Detailed interfaces of components need to be published.

 New components have to be integrated with existing

components.

 Differences in data representation of interface types on

different processors (of different vendors) have to be

resolved.

SWEN-342 Engineering of Concurrent & Distributed Software Systems

Concurrency

 Components in distributed systems are executed in

concurrent processes.

 Components access and update shared resources (e.g.

variables, databases, device drivers).

 Integrity of the system may be violated if concurrent

updates are not coordinated.

 Lost updates

 Inconsistent analysis

SWEN-342 Engineering of Concurrent & Distributed Software Systems

Fault Tolerance

 Hardware, software and networks fail!

 Distributed systems must maintain availability even at low

levels of hardware/software/network reliability.

 Fault tolerance is achieved by

 recovery

 redundancy

SWEN-342 Engineering of Concurrent & Distributed Software Systems

Scalability

 Adoption of distributed systems to

 accommodate more users

 respond faster (this is the hard one)

 Usually done by adding more and/or faster processors.

 Components should not need to be changed when scale of

a system increases.

 Design components to be scalable!

Transparency in Distributed Systems

SWEN-342 Engineering of Concurrent & Distributed Software Systems

Transparency

 Distributed systems should be perceived by users and

application programmers as a whole rather than as a

collection of cooperating components.

 Transparency has different dimensions that represent

various properties distributed systems should have.

SWEN-342 Engineering of Concurrent & Distributed Software Systems

Location Transparency

 Enables information objects to be accessed without

knowledge of their location.

 Example: File system operations in NFS

 Example: Pages in the Web

 Example: Tables in distributed databases

SWEN-342 Engineering of Concurrent & Distributed Software Systems

Access

Transparency

Location

Transparency

Concurrency

Transparency

Migration

Transparency

Performance

Transparency

Scalability

Transparency

Replication

Transparency

Failure

Transparency

Distribution Transparency

SWEN-342 Engineering of Concurrent & Distributed Software Systems

Access Transparency

 Enables local and remote information objects to be

accessed using identical operations.

 Example: File system operations in NFS.

 Example: Navigation in the Web.

 Example: SQL Queries

SWEN-342 Engineering of Concurrent & Distributed Software Systems

Concurrency Transparency

 Enables several processes to operate concurrently using

shared information objects without interference between

them.

 Example: NFS

 Example: Automatic teller machine network

 Example: Database management system

SWEN-342 Engineering of Concurrent & Distributed Software Systems

Replication Transparency

 Enables multiple instances of information objects to be

used to increase reliability and performance without

knowledge of the replicas by users or application programs

 Example: Distributed DBMS

 Example: Mirroring Web Pages.

SWEN-342 Engineering of Concurrent & Distributed Software Systems

Failure Transparency

 Enables the concealment of faults

 Allows users and applications to complete their tasks

despite the failure of other components.

 Example: Database Management System

SWEN-342 Engineering of Concurrent & Distributed Software Systems

Migration Transparency

 Allows the movement of information objects within a

system without affecting the operations of users or

application programs

 Example: NFS

 Example: Web Pages

SWEN-342 Engineering of Concurrent & Distributed Software Systems

Performance Transparency

 Allows the system to be reconfigured to improve

performance as loads vary.

 Example: Distributed make.

SWEN-342 Engineering of Concurrent & Distributed Software Systems

Scaling Transparency

 Allows the system and applications to expand in scale

without change to the system structure or the application

algorithms.

 Example: World-Wide-Web

 Example: Distributed Database

SWEN-342 Engineering of Concurrent & Distributed Software Systems

Access

Transparency

Location

Transparency

Concurrency

Transparency

Migration

Transparency

Performance

Transparency

Scalability

Transparency

Replication

Transparency

Failure

Transparency

Distribution Transparency

SWEN-342 Engineering of Concurrent & Distributed Software Systems

Two Views of Transparency

 The system should hide its distributed nature, programs

running on a multiple-computer system appear no different

from a single-computer system.

 The system should not hide its distributed nature. The

programs are aware of the multiple computers in the

system.

 When designing distributed applications we need to favor

the second view.

(see: “A Note on Distributed Computing”, Jim Waldo, et al.)

SWEN-342 Engineering of Concurrent & Distributed Software Systems

Key Points

 What is a Distributed System

 Adoption of Distributed Systems is driven by Non-

Functional Requirements

 Distribution needs to be transparent to users and

application designers

 Transparency has several dimensions

 Transparency dimensions depend on each other

