
Actor-Based Design

Guidelines for creating actor-based designs.

 What are some of the design heuristics, or best

practices when using actors in the

implementation of concurrent system?

Like most techniques, actors are not a golden
hammer, appropriate for all situations.

 Sending messages incurs overhead.
• Heavy interaction between actors

• Request and response messages

• Voting or quorum of actors

 Preferred characteristics
• Independent actors

• "Fire-and-forget" interactions

• Asynchronous I/O

Not good for

actors.

The design task is to decompose the system into
actors and the messages communicated.

 Actors may be the easiest to identify
• You are the director of a play; What are the clear

and distinct roles. (Separation of concerns)

• Hierarchical structure is often used.
 Supervisor actors

• Active objects in thread-based designs are not

necessarily the best actors.

• Consider Typed Actors to convert a POJC

application into an message based one.

 You need to identify actor responsibilities
• Pick a well-defined, limited set for each actor

(Cohesion)

• Responsibilities as independent as possible

(Coupling)

Messages are the next stage of design.

 Messaging is the lifeblood of an actor-based

system.
• What is the minimum amount of interaction

needed between actors?

• What messages would result?

• Send only immutable messages

• Decide on the message content

 Initially, put concerns of overhead aside.
• Don't be afraid to pass immutable data around.

• The more you can do with messages, the less you

have to worry about synchronization.

• Today's systems can handle a lot.

• “Make it work, make it right, …”

This sounds very much like an object-oriented
design decomposition.

 In some ways, actors are the ultimate objects.

 Just like designing OO systems, the static part

(class diagrams) is easy.
• Identifying actors and messages says nothing

about the dynamic operation.

• Run feature scenarios through your system to

discover design gaps, or awkward interactions.

Now, you can consider some of the performance
issues that might arise.

 Use actors for prototyping
• Prototype the concurrent solution using a purely

Actor-based design.

• Use profiling tools to identify parts of your

application that might benefit from a different

approach.

• “Make it work, make it right, make it fast.”

 Watch out for I/O
• Actors and I/O should be interleaved carefully.

• Asynchronous I/O and actors fit well together

• Blocking I/O can cause an actor to starve other

actors.

• Dead lock (and dead actors) cause problems.

The Advantages of Messaging

 “Messaging systems are an abstraction on a

synchronous process”

 Actors only communicate to the outside world

by sending & receiving messages:
• Messages are maintained in a mailbox until the

actor retrieves them (no need to maintain a

separate message queue)

• Only one message is handled at a time in single-

threaded fashion, so state can be maintained

without explicit locks.

• Each actor stands alone!

