Actor-Based Design



Guidelines for creating actor-based designs.

= What are some of the design heuristics, or best
practices when using actors in the
Implementation of concurrent system?



Like most techniques, actors are not a golden
hammer, appropriate for all situations.

= Sending messages incurs overhead.
« Heavy interaction between actors
 Request and response messages
« Voting or quorum of actors

= Preferred characteristics
* Independent actors
« "Fire-and-forget" interactions
« Asynchronous I/O

Not good for
actors.



The design task Is to decompose the system into
actors and the messages communicated.

= Actors may be the easiest to identify
* You are the director of a play; What are the clear
and distinct roles. (Separation of concerns)

« Hierarchical structure is often used.
¢ Supervisor actors

« Active objects in thread-based designs are not
necessarily the best actors.

 Consider Typed Actors to convert a POJC
application into an message based one.

* You need to identify actor responsibilities
* Pick a well-defined, limited set for each actor
(Cohesion)
 Responsibilities as independent as possible
(Coupling)



Messages are the next stage of design.

= Messaging is the lifeblood of an actor-based
system.
« What is the minimum amount of interaction
needed between actors?
 What messages would result?
« Send only immutable messages
 Decide on the message content

= [nitially, put concerns of overhead aside.
 Don't be afraid to pass immutable data around.
« The more you can do with messages, the less you
have to worry about synchronization.
 Today's systems can handle a lot.
+ “Make it work, make itright, ...”



This sounds very much like an object-oriented
designh decomposition.

* |n some ways, actors are the ultimate objects.

= Just like designing OO systems, the static part

(class diagrams) Is easy.

 |dentifying actors and messages says nothing
about the dynamic operation.

 Run feature scenarios through your system to
discover design gaps, or awkward interactions.



Now, you can consider some of the performance
Issues that might arise.

= Use actors for prototyping
* Prototype the concurrent solution using a purely
Actor-based design.
« Use profiling tools to identify parts of your

application that might benefit from a different
approach.

» “Make it work, make it right, make it fast.”

= Watch out for I/O
Actors and I/O should be interleaved carefully.

Asynchronous I/O and actors fit well together

Blocking I/O can cause an actor to starve other
actors.

Dead lock (and dead actors) cause problems.



The Advantages of Messaging

» “Messaging systems are an abstraction on a
synchronous process”

= Actors only communicate to the outside world

by sending & receiving messages:

« Messages are maintained in a mailbox until the
actor retrieves them (no need to maintain a
separate message queue)

 Only one message is handled at a time in single-
threaded fashion, so state can be maintained
without explicit locks.

 Each actor stands alone!



