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What Is a Thread? 
Threads exist within a process — every process has at least one. Threads 
share the process's resources, including memory and open files. This makes 
for efficient, but potentially problematic, communication. 

 

 



The Promises of Concurrency 

• Original (OS centric processes) 
– Better resource utilization. 

– Fairness among multiple users with multiple computations. 

 



The Promises of Concurrency 

• Original (OS centric processes) 
– Better resource utilization. 

– Fairness among multiple users with multiple computations. 

• Current (process centric threads) 
– Exploiting multiple processors 

– Moore's Law running out of steam (multi-core). 

– Modeling: Divide & conquer on loosely related tasks. 

– Simplify handling asynchronicity (e.g., mouse events) 

– Throughput (even on single CPU systems) 

– Responsiveness 

 

http://en.wikipedia.org/wiki/Moore's_law


The Perils of Concurrency 
• Safety: Nothing bad happens 

– Incorrect behavior in context of concurrency 

– Race conditions 

– Memory barrier (caching) 

– Overly optimistic compiler optimizations 
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• Performance 

– TANSTAAFL (There Ain’t No Such Thing As A Free Lunch) 

– Context switching overhead 

– Disabled compiler optimizations 
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• Liveness: Good things eventually happen 

– One or more threads cannot make progress 

– Deadlock 

• Fairness: Let's share, boys and girls 

– Starvation 

– Livelock 

• Performance 

– TANSTAAFL 

– Context switching overhead 

– Disabled compiler optimizations 

• Testing, hair-pulling, and Heisenbugs 

 

 



The Perils of Concurrency 

• 1985-1987 -- Therac-25 medical accelerator. A radiation therapy device 
malfunctions and delivers lethal radiation doses at several medical 
facilities. Based upon a previous design, the Therac-25 was an "improved" 
therapy system that could deliver two different kinds of radiation: either a 
low-power electron beam (beta particles) or X-rays. The Therac-25's X-rays 
were generated by smashing high-power electrons into a metal target 
positioned between the electron gun and the patient. A second 
"improvement" was the replacement of the older Therac-20's 
electromechanical safety interlocks with software control, a decision made 
because software was perceived to be more reliable. 

• What engineers didn't know was that both the 20 and the 25 were built 
upon an operating system that had been kludged together by a 
programmer with no formal training. Because of a subtle bug called a 
"race condition," a quick-fingered typist could accidentally configure the 
Therac-25 so the electron beam would fire in high-power mode but with 
the metal X-ray target out of position. At least five patients die; others are 
seriously injured. 
 

(Source: “History's Worst Software Bugs”, Wired) 

 

http://en.wikipedia.org/wiki/Therac-25
http://en.wikipedia.org/wiki/Therac-25
http://en.wikipedia.org/wiki/Therac-25
http://en.wikipedia.org/wiki/Race_condition


The Ultimate Culprit - Shared, Mutable State 

• Most of your development has been in imperative languages. 

• The fundamental operation is assignment to change state. 
– Assignable variables are mutable. 

– May be exposed as public (bad karma). 

– May be exposed via interface methods (medium warm karma). 

– Things get tricky very fast when > 1 thread can invoke a mutating 
function. 
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public class Counter { 
   private int count = 0 ; 
 
   public void increment() { 
      count = count + 1 ; 
   } 
 
   public int getCount() { 
      return count ; 
   } 
} 

If we call increment() 10,000 times 
and then call getCount(), what value is 
returned? 



The Ultimate Culprit - Shared, Mutable State 

• Most of your development has been in imperative languages. 

• The fundamental operation is assignment to change state. 
– Assignable variables are mutable. 

– May be exposed as public (bad karma). 

– May be exposed via interface methods (medium warm karma). 

– Things get tricky very fast when > 1 thread can invoke a mutating 
function. 

• Three basic approaches: 
– Make things immutable. 

– Hide shared state behind sequential access. 

– Provide mechanisms to support controlled access to shared, mutable 
state. 



Other Issues 

• Thread management 
– How many threads at one time? 

– Allocation of tasks to threads. 

– Thread scheduling. 

• Higher level constructs 
– Fork / join 

– Callables & Futures 

• Distributed state management 
– State consistency 

– Decision consensus 


