
Introduction to Concurrency

SWEN-342

What Is "Concurrency?"

What Is "Concurrency?"

What Is a Process?

What Is "Concurrency?“

What Is a Process?

What Is a Thread?

What Is “Concurrency?”
Two events are said to be concurrent if they occur within the same time
interval. Two or more tasks executing over the same time interval are said to
execute concurrently. In concurrent programming, there are two basic units
of execution: processes and threads.

What Is a Process?

What Is a Thread?

What Is "Concurrency?“
Two events are said to be concurrent if they occur within the same time
interval. Two or more tasks executing over the same time interval are said to
execute concurrently. In concurrent programming, there are two basic units
of execution: processes and threads.

What Is a Process?
A process has a self-contained execution environment. A process generally
has a complete, private set of basic run-time resources; in particular, each
process has its own memory space.

 What Is a Thread?

What Is "Concurrency?“
Two events are said to be concurrent if they occur within the same time
interval. Two or more tasks executing over the same time interval are said to
execute concurrently. In concurrent programming, there are two basic units
of execution: processes and threads.

What Is a Process?
A process has a self-contained execution environment. A process generally
has a complete, private set of basic run-time resources; in particular, each
process has its own memory space.

What Is a Thread?
Threads exist within a process — every process has at least one. Threads
share the process's resources, including memory and open files. This makes
for efficient, but potentially problematic, communication.

The Promises of Concurrency

• Original (OS centric processes)
– Better resource utilization.

– Fairness among multiple users with multiple computations.

The Promises of Concurrency

• Original (OS centric processes)
– Better resource utilization.

– Fairness among multiple users with multiple computations.

• Current (process centric threads)
– Exploiting multiple processors

– Moore's Law running out of steam (multi-core).

– Modeling: Divide & conquer on loosely related tasks.

– Simplify handling asynchronicity (e.g., mouse events)

– Throughput (even on single CPU systems)

– Responsiveness

http://en.wikipedia.org/wiki/Moore's_law

The Perils of Concurrency
• Safety: Nothing bad happens

– Incorrect behavior in context of concurrency

– Race conditions

– Memory barrier (caching)

– Overly optimistic compiler optimizations

The Perils of Concurrency
• Safety: Nothing bad happens

– Incorrect behavior in context of concurrency

– Race conditions

– Memory barrier (caching)

– Overly optimistic compiler optimizations

• Liveness: Good things eventually happen

– One or more threads cannot make progress

– Deadlock

The Perils of Concurrency
• Safety: Nothing bad happens

– Incorrect behavior in context of concurrency

– Race conditions

– Memory barrier (caching)

– Overly optimistic compiler optimizations

• Liveness: Good things eventually happen

– One or more threads cannot make progress

– Deadlock

• Fairness: Let's share, boys and girls

– Starvation

– Livelock

The Perils of Concurrency
• Safety: Nothing bad happens

– Incorrect behavior in context of concurrency

– Race conditions

– Memory barrier (caching)

– Overly optimistic compiler optimizations

• Liveness: Good things eventually happen

– One or more threads cannot make progress

– Deadlock

• Fairness: Let's share, boys and girls

– Starvation

– Livelock

• Performance

– TANSTAAFL (There Ain’t No Such Thing As A Free Lunch)

– Context switching overhead

– Disabled compiler optimizations

The Perils of Concurrency
• Safety: Nothing bad happens

– Incorrect behavior in context of concurrency

– Race conditions

– Memory barrier (caching)

– Overly optimistic compiler optimizations

• Liveness: Good things eventually happen

– One or more threads cannot make progress

– Deadlock

• Fairness: Let's share, boys and girls

– Starvation

– Livelock

• Performance

– TANSTAAFL

– Context switching overhead

– Disabled compiler optimizations

• Testing, hair-pulling, and Heisenbugs

The Perils of Concurrency

• 1985-1987 -- Therac-25 medical accelerator. A radiation therapy device
malfunctions and delivers lethal radiation doses at several medical
facilities. Based upon a previous design, the Therac-25 was an "improved"
therapy system that could deliver two different kinds of radiation: either a
low-power electron beam (beta particles) or X-rays. The Therac-25's X-rays
were generated by smashing high-power electrons into a metal target
positioned between the electron gun and the patient. A second
"improvement" was the replacement of the older Therac-20's
electromechanical safety interlocks with software control, a decision made
because software was perceived to be more reliable.

• What engineers didn't know was that both the 20 and the 25 were built
upon an operating system that had been kludged together by a
programmer with no formal training. Because of a subtle bug called a
"race condition," a quick-fingered typist could accidentally configure the
Therac-25 so the electron beam would fire in high-power mode but with
the metal X-ray target out of position. At least five patients die; others are
seriously injured.

(Source: “History's Worst Software Bugs”, Wired)

http://en.wikipedia.org/wiki/Therac-25
http://en.wikipedia.org/wiki/Therac-25
http://en.wikipedia.org/wiki/Therac-25
http://en.wikipedia.org/wiki/Race_condition

The Ultimate Culprit - Shared, Mutable State

• Most of your development has been in imperative languages.

• The fundamental operation is assignment to change state.
– Assignable variables are mutable.

– May be exposed as public (bad karma).

– May be exposed via interface methods (medium warm karma).

– Things get tricky very fast when > 1 thread can invoke a mutating
function.

The Ultimate Culprit - Shared, Mutable State

• Most of your development has been in imperative languages.

• The fundamental operation is assignment to change state.
– Assignable variables are mutable.

– May be exposed as public (bad karma).

– May be exposed via interface methods (medium warm karma).

– Things get tricky very fast when > 1 thread can invoke a mutating
function.

public class Counter {
 private int count = 0 ;

 public void increment() {
 count = count + 1 ;
 }

 public int getCount() {
 return count ;
 }
}

If we call increment() 10,000 times
and then call getCount(), what value is
returned?

The Ultimate Culprit - Shared, Mutable State

• Most of your development has been in imperative languages.

• The fundamental operation is assignment to change state.
– Assignable variables are mutable.

– May be exposed as public (bad karma).

– May be exposed via interface methods (medium warm karma).

– Things get tricky very fast when > 1 thread can invoke a mutating
function.

• Three basic approaches:
– Make things immutable.

– Hide shared state behind sequential access.

– Provide mechanisms to support controlled access to shared, mutable
state.

Other Issues

• Thread management
– How many threads at one time?

– Allocation of tasks to threads.

– Thread scheduling.

• Higher level constructs
– Fork / join

– Callables & Futures

• Distributed state management
– State consistency

– Decision consensus

