
Concurrency & Collections

Outline

• Immutable collections

• Synchronized collections

• Concurrent collections

• Blocking collections

Immutable Collections

• The Collections framework provides factories to create
immutable (unmodifiable) collections.
– static X unmodifiableX(X c)

– Where X can be Collection, List, Map, Set, SortedMap,
SortedSet

• Only the collection, not the elements in it, are protected.

• Underlying collection still can change “under your feet.”

What are the classes of the objects returned by
these factories?

Do these interfaces have state modifying methods?

How can immutability be maintained?

Synchronized Collections

• The Collections framework also provides factories to create synchronized
collections.

– static X synchronizedX(X c)

– Where X can be Collection, List, Map, Set, SortedMap,
SortedSet

List list = Collections.synchronizedList(new ArrayList()) ;

. . .

synchronized (list) {

 Iterator i = list.iterator() ;

 while (i.hasNext()) {

 doSomething(i.next()) ;

 }

}

If we simply wrap synchronized methods around
the collection will that be enough, or do we have
to impose additional rules? Do we need similar
rules for the unmodifiable collections?

What type of problem does this code exhibit?
Why? How can it be fixed?

Considering Immutable and Synchronized Collections

Is there be any sense in wrapping an immutable
collection with synchronization?

Is there be any sense in wrapping a synchronized
collection with immutability?

Synchronized collections may have performance
issues because all access is serialized.

• Issues are independent of whether:
a. We use a synchronized collection factory or

b. We do the synchronization ourselves

• The issues may have to do with embedded, complex
collection algorithms.

• Concurrent collections provide carefully defined, high
performance algorithms with short-lived locks.

If we want to allow non-serialized concurrency, we have to relax
some requirements, or somehow allow concurrent access.

Consider a LinkedList. How could we allow concurrent
modification of the list (set value, addition, deletion)?

What are the issues with Iterators in the face of concurrent
access? How could they be designed to work?

What could we say about the value returned by a size method?

The blocking queue supports a producer-consumer
pattern.

Exception generating

boolean add(E e) adds to end of queue Exception if no room.

E remove() 1st element with removal Exception if queue empty.

E element() 1st element w/o removal Exception if queue empty.

Non-blocking w/special return value

boolean offer(E e) adds to end of queue false if no room.

E poll() 1st element with removal null if queue is empty.

E peek() 1st element w/o removal null if queue is empty.

Blocking

void put(E e) adds to end of queue Waits until room.

E take() 1st element with removal Waits if empty.

Timeout

boolean offer(E e, long t, TimeUnit u)

E poll(long t, TimeUnit u)

Note: offer & poll with timeout, put, and take can throw
InterruptedException

Java provides many different types of blocking queues
from basic to enhanced.

• ArrayBlockingQueue<E>

• LinkedBlockingQueue<E>

• PriorityBlockingQueue<E>
– Elements ordered by comparison

• DelayQueue<E extends Delayed>
– Elements ordered by delay; not available until after delay expires

• SynchronousQueue<E>
– 0 length queue, producer and consumer must exchange data

• LinkedTransferQueue<E>
– Unbounded, producer can wait for consumer to get data

Interface ConcurrentMap<K, V>

Map<K, V> with atomic
boolean remove(K key, V value)

Remove key & value iff key maps to value.

boolean replace(K key, V oldValue, V newValue)

Replace key with newValue iff key is mapped to newValue.

V replace(K key, V value)

Replace key with value iff key is mapped to something.

Return previous value (or null if there was no map).

V putIfAbsent(K key, V value)

Associate key with value if the key is not currently mapped.

Returns null if the put succeeded, otherwise the currently mapped value.

One implementing class: ConcurrentHashMap<K, V>
Highly optimized for concurrent thread-safe access to the map data
structure.

A Sampling of Other Interfaces & Classes
Double Ended Queues (Deques)

Interface BlockingDeque & Class LinkeBlocking Deque

• addFirst offerFirst putFirst offerFirst (with timeout)
• removeFirst pollFirst takeFirst pollFirst (with timeout)
• getFirst peekFirst

• addLast offerLast putLast offerLast (with timeout)
• removeLast pollLast takeLast pollLast (with timeout)
• getLast peekLast

Classes
ConcurrentLinkedQueue<E>

Fine granularity locks

Low latency

CopyOnWriteArrayList<E>

CopyOnWriteArraySet<E>
When traversals much more frequent than mutations.

Snapshot style iteration

Read the javadocs for full information!

