Deadlock



Topic Outline

* Deadlocks
— Desired access properties for shared mutable resources
— Classic deadlock example: Dining Philosophers
— Root causes and four necessary and sufficient conditions
— Deadlock prevention / avoidance / detect + repair



When using shared, mutable resources, there are
several access properties your system should exhibit.

A shared, mutable resource (SMR) could be a shared mutable
variable, or a device such as a communication channel, disk,

or printer. What properties do you want your system to
_ o ;5
. Safety (JOb #1): exhibit with respect to access to an SMR:

Mutually exclusive access to shared, mutable resource (SMR)

* Liveness 1:
If threads are trying to access an SMR, one eventually does.

* Liveness 2:
A thread holding an SMR eventually releases it.

* Fairness (no starvation):

If a thread is trying to access an SMR, it eventually gains
access.



The classic Dining Philosophers can deadlock and leave
the philosophers hungry.

* Informally — a set of threads blocked with no possibility of progress.

 Formally — a set of threads, each holding an SMR needed by another
thread in the set and waiting to acquire a resource which is already held

* Classic example: Dining Philosophers

What is a path to
deadlock?

* Naive Approach
>/ — Get right fork
— Get left fork
— Eat

What conditions exist that
permit this deadlock?




There are four necessary and sufficient conditions for
deadlock to be possible.

Necessary means all must hold for deadlock to be possible.

Sufficient means if all hold deadlock is possible.

The four necessary and sufficient conditions for deadlock to
be possible are
— Exclusive use of resources

How could we remove
— No preemption of resource hold each of these conditions in

— Serial acquisition of resources the Dining Philosophers?
— Cyclic hold-and-wait graph
Having these four conditions guarantees that deadlock is
possible. It does not guarantee that it will happen.

— Do you want to trust your system with “it may not happen”?



Observations

Deadlock can occur with both individual and pooled
resources.

Goal is to design deadlock out of the system
— Eliminate one of the four conditions

— Use allocation methods, such as, Bankers Algorithm, that will not
allocate into an unsafe state

Detect and recover:
— Detection — periodically scan allocation graph for deadlocks

— Recover — kill a thread

Use a different concurrency mechanism not prone to
deadlock

— Software Transaction Memory later in the term



