
Deadlock 



Topic Outline 

• Deadlocks 
– Desired access properties for shared mutable resources 

– Classic deadlock example: Dining Philosophers 

– Root causes and four necessary and sufficient conditions 

– Deadlock prevention / avoidance / detect + repair 

2 



When using shared, mutable resources, there are 
several access properties your system should exhibit. 

• A shared, mutable resource (SMR) could be a shared mutable 
variable, or a device such as a communication channel, disk, 
or printer. 

• Safety (job #1): 
Mutually exclusive access to shared, mutable resource (SMR) 

• Liveness 1: 
If threads are trying to access an SMR, one eventually does. 

• Liveness 2: 
A thread holding an SMR eventually releases it. 

• Fairness (no starvation): 
If a thread is trying to access an SMR, it eventually gains 
access. 

What properties do you want your system to 
exhibit with respect to access to an SMR? 

3 



The classic Dining Philosophers can deadlock and leave 
the philosophers hungry. 

• Informally – a set of threads blocked with no possibility of progress. 

• Formally – a set of threads, each holding an SMR needed by another 
thread in the set and waiting to acquire a resource which is already held 

• Classic example: Dining Philosophers 

F0 

F1 F3 

F2 

What is a path to 
deadlock? 

• Naïve Approach 
– Get right fork 
– Get left fork 
– Eat 

What conditions exist that 
permit this deadlock? 

4 



There are four necessary and sufficient conditions for 
deadlock to be possible. 

• Necessary means all must hold for deadlock to be possible. 

• Sufficient means if all hold deadlock is possible. 

• The four necessary and sufficient conditions for deadlock to 
be possible are 
– Exclusive use of resources 

– No preemption of resource hold 

– Serial acquisition of resources 

– Cyclic hold-and-wait graph 

• Having these four conditions guarantees that deadlock is 
possible. It does not guarantee that it will happen. 
– Do you want to trust your system with “it may not happen”? 

How could we remove 
each of these conditions in 
the Dining Philosophers? 

5 



Observations 

• Deadlock can occur with both individual and pooled 
resources. 

• Goal is to design deadlock out of the system 
– Eliminate one of the four conditions 

– Use allocation methods, such as, Bankers Algorithm, that will not 
allocate into an unsafe state 

• Detect and recover: 
– Detection – periodically scan allocation graph for deadlocks 

– Recover – kill a thread 

• Use a different concurrency mechanism not prone to 
deadlock 
– Software Transaction Memory later in the term 

6 


