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8.2: Anonymous Classes



Lambdas ● In this unit we will learn about a different way to 
create and use classes.
○ Using classes from inside other classes.
○ Creating on the fly classes
○ Simplifying the class declaration syntax with 

lambdas
○ Working with streams

● We will be exploring several different ways to 
generate and use classes, including:
○ Inner Classes ✅
○ Anonymous Classes ✅
○ Lambdas ⮜
○ Streams⮜

● Today we will focusing on a condensed notation 
for anonymous classes, known as lambdas. 
We'll also explore some Java streams which 
traditionally make heavy use of lambdas.
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Lambda expressions are a condensed version of 
anonymous classes for functional interfaces.

public interface Shape {
   double area (double length);
}

public static void main (String[] args) {
   int x = 5;
   int height = 10;

   Shape rectangle =
                 (width) -> width * height;

   System.out.println (rectangle.area (x));
}
}



Review: 
Anonymous Class● Java allows the creation of class 

instances without ever formally declaring 
the class

● This is called an anonymous class

● Start by creating a new instance of a 
base class or interface

● After the () add {} and include any 
implementation details

● It is advised to only use anonymous 
classes when only a couple methods 
must be implemented

 public interface Shape {
     double area (double length);
 }

 public static void main (String[] args) {
     int x = 5;
     Shape square = new Shape () {
         public double area (double length){
             return length * length;
         }
     };
     System.out.print (square.area(x));
 }
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Passing the length to area is a little kludgy, but it will 
make demonstrating lambdas in the coming slides 
easier. 



Functional Interface
● Interfaces that have only one method, are known 

as functional interfaces

● They are effectively the closest thing you can get 
to a traditional function in a fully object oriented 
language like Java
○ Traditional meaning a non-method function, like 

the ones we wrote in python

● What are some functional interfaces that have 
been used in the class so far?
○ Comparable
○ Comparator
○ Iterable

● They are often the target of anonymous classes 
because they are so small

 public interface Shape {

     double area (double length);

 }
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A functional interface is an interface that only 
contains a single method.



Lambda I● Since functional interfaces only have a singular 
method there is a lot of information that can be 
inferred from them

● This is exploited by lambda expressions which 
can be used in the place of anonymous classes

● The easiest information to infer is the name of 
the method in the functional interface

● When using lambda expressions the inferred 
information will not be written

● The general lambda syntax is the function's 
parameter list followed by a -> then the body of 
the function

public interface Shape {
   double area (double length);
}

public static void main (String[] args) {
   int x = 5;

   Shape circle = (double radius) -> {
      return Math.PI * Math.pow (radius, 2);
   };

   System.out.println (circle.area (x));
}
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The arrow (->) is used to separate a functional 
interface's parameters and implementation in a 
lambda expression.



Lambda II ● What other information can be inferred from the 
interface?
○ parameter types
○ return (type)

● With Java being a typed language, we know the 
types of the parameters, so that information can 
be removed from the lambda expression

● Since we know the function returns, we can 
remove that as well

● The curly braces can be removed if the 
statement is only one line

● If there is only one parameter, you may also omit 
the parenthesis surrounding it

● Reminder: Since lambda are a form of 
anonymous class they can also access local 
variables directly (as seen in the example)

public interface Shape {
   double area (double length);
}

public static void main (String[] args) {
   int x = 5;
   int height = 10;

   Shape rectangle =
                 width -> width * height;

   System.out.println (rectangle.area (x));
}
}
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Notice the height is specified as a local variable
since it cannot be passed in without changing the 
interface.



Lambda III● Methods, just like everything else in Java, have a 
memory address associated with them

● For static methods, we can refer to that memory 
address using a method reference

○ Interface methods can also be accessed via a 
method reference

● A method reference is accessed using the 
class/interface name a double colon (::) and the 
method's name

○ Example: Iterable::iterator

● Do not include any parameters

● When available, you can simplify a lambda even 
further by using a method reference instead of a 
local implementation
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public interface Shape {
   double area (double length);
}

public static double triangleArea (double side) {

    return Math.sqrt(3) * Math.pow (side, 2) / 4;

}

public static void main (String[] args) {
   int x = 5;
   int height = 10;

   Shape triangle = ShapeExample::triangleArea;

   System.out.println (triangle.area (x));
}

The above code is in the ShapeExample class 
which was omitted for space reasons.

Method reference



12

Streams● Streams are a sequence of elements
○ Characters in file
○ Bytes over the network
○ Elements in a List
○ etc.

● Java provides a lot of support for Streams

● In particular, today we are going to look as the 
stream method in the Collection interface
○ The Collection interface is the base interface 

for List, Queue, Set, and others (but not Map)

● The Stream<E> stream() method returns a 
Stream of elements in a Collection

● Alone this is not exceptionally useful, but Java 
has several methods that work on streams 
that will be useful

Streams are a continuous sequence of information 
that can be acted on and manipulated.



forEach & 
Consumer

● Stream.forEach is used to perform some 
operation on each element in the stream

● It's funny looking parameter (Consumer <? 
super T> action) accepts an instance of the 
Consumer interface
○ Consumer is a functional interface
○ I bet you can see where this is going …

● Consumer's only method takes in an element of 
the stream and performs the action on it
○ We can use lambdas to quickly create simple 

actions like:
■ Printing the element
■ Performing math on the element
■ Writing it to a file
■ etc.
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static int sum = 0;
public static void main(String[] args) {
  List<Integer> grades = new ArrayList<>();
  grades.add (54);
  grades.add (85);
  grades.add (97);
  grades.add (72);

  grades.stream().forEach (e -> sum += e);

  grades.stream().forEach
                     (System.out::println);

  System.out.println ("Sum = " + sum);

Use forEach to perform some action on each 
element of Stream

sum cannot be 
local due to 
lambda constraints

Method reference
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filter & Predicate● Another common stream operation is to filter 
data on specific criteria before doing other work

● The is accomplished using the 
Stream.filter method

● filter accepts a single parameter which is an 
instance of the Predicate interface

○ You guessed it, another functional interface

○ It's lambda time!

● filter is different from forEach in that 
instead of performing an action, filter returns 
a modified Stream

○ The returned stream only contains the elements 
that satisfy the Predicate

● For this reason, filter is often used as part of 
other Stream operations which can be chained 
together using dot notation

public static void main(String[] args) {
  List<Integer> grades = new ArrayList<>();
  grades.add (54);
  grades.add (85);
  grades.add (97);
  grades.add (72);

  // Print only passing grades
  grades.stream().filter(e -> e > 69)
             .forEach(System.out::println);
}

filter is used to reduce the amount of data in a 
stream based on some criteria.

Filter on all the 
passing grades

Print the filtered stream



Functional 
Programming

● In functional programming, functions are first 
class citizens

○ They can be assigned to variables
○ Passed as arguments
○ Returned by functions

● In Java this is achieved by creating classes that 
are a functional interface

○ I.E. They have only a single method

● Pure functions:

○ Are not effected by state
○ Have no side effects (don’t change state)
○ Always return the same result with the same 

arguments

● Since pure functions do not change any state 
they can be used without any fear of 
concurrency issues
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“Functional programing is a 
declarative programming paradigm 
in which function definitions are
trees of expressions that map values
to other values, rather than a 
sequence of imperative statements
which update the running state of the 
program.”

Functional programming is often associated with 
recursion, though that is not the only way to use 
it.
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Why Lambda’s● We often see functional programming 
associated with lambda’s why?

● In Java, lambda’s are a shorthand for functional 
interfaces

○ This is the tool by which Java manages functions 
as first class citizens

● Lambda’s do not allow any local state from a 
calling function to be changed

● However, you can still modify global state

○ This is a side effect
○ If they modify state, they are not a pure function



Stream Library
● Stream.filter(predicate) – removes items 

from the stream that fail the predicate

○ String.matches(regex) – returns true if a 
string matches the specified regular expression

● Stream.foreach(action) – performs the 
specified action on each element in a stream

○ Terminates the stream

○ Action is often implemented as a lambda

● Stream.map(mapper) – applies the mapper 
‘function’ to each element in a stream

○ Intermediate operation

○ Mapper is often implemented as a lambda

● Stream.collect(collector) – adds each 
element in the stream to a collection

○ Terminates the stream

○ May include other reductions on top of adding to 
the collection

○ Often used with Collectors 19

Java 8+ has extensive support for streams 
which use the functional programming 
paradigm. 

A select few of the available methods are 
detailed on the right.

Functional Programming Term – Reduction

The mechanism for executing functional 
programs is reduction. Reduction is the process 
of converting an expression to a simpler form.
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Stream Extensions● IntStream.range(start, end) – creates 
a stream of integers from start to end (non-
inclusive)

● Arrays.stream(array) – uses array as the 
source of a stream

● Arrays.stream(array, start, end) –
uses a portion of an array (end is non-inclusive)

● Files.lines(path) – uses a file interpreted 
as lines as the source of a stream

○ Can use File.toPath() to easily get a file’s 
path

● Collection.stream() – uses the collection 
as the source of a stream

● Collectors.toList() – accumulates a 
stream into a List

In addition to the stream library. There is 
support for creating and working with 
streams in many other libraries.

A few examples are listed to the left.

Java has way more support for Streams than 
what is mentioned here. If you don’t see 
something try searching for it.


