
CSEC/SWEN-124
Software Development & Problem Solving

8.2: Anonymous Classes

Lambdas ● In this unit we will learn about a different way to
create and use classes.
○ Using classes from inside other classes.
○ Creating on the fly classes
○ Simplifying the class declaration syntax with

lambdas
○ Working with streams

● We will be exploring several different ways to
generate and use classes, including:
○ Inner Classes ✅
○ Anonymous Classes ✅
○ Lambdas ⮜
○ Streams⮜

● Today we will focusing on a condensed notation
for anonymous classes, known as lambdas.
We'll also explore some Java streams which
traditionally make heavy use of lambdas.

2

Lambda expressions are a condensed version of
anonymous classes for functional interfaces.

public interface Shape {
 double area (double length);
}

public static void main (String[] args) {
 int x = 5;
 int height = 10;

 Shape rectangle =
 (width) -> width * height;

 System.out.println (rectangle.area (x));
}
}

Review:
Anonymous Class● Java allows the creation of class

instances without ever formally declaring
the class

● This is called an anonymous class

● Start by creating a new instance of a
base class or interface

● After the () add {} and include any
implementation details

● It is advised to only use anonymous
classes when only a couple methods
must be implemented

 public interface Shape {
 double area (double length);
 }

 public static void main (String[] args) {
 int x = 5;
 Shape square = new Shape () {
 public double area (double length){
 return length * length;
 }
 };
 System.out.print (square.area(x));
 }

3

Passing the length to area is a little kludgy, but it will
make demonstrating lambdas in the coming slides
easier.

Functional Interface
● Interfaces that have only one method, are known

as functional interfaces

● They are effectively the closest thing you can get
to a traditional function in a fully object oriented
language like Java
○ Traditional meaning a non-method function, like

the ones we wrote in python

● What are some functional interfaces that have
been used in the class so far?
○ Comparable
○ Comparator
○ Iterable

● They are often the target of anonymous classes
because they are so small

 public interface Shape {

 double area (double length);

 }

5

A functional interface is an interface that only
contains a single method.

Lambda I● Since functional interfaces only have a singular
method there is a lot of information that can be
inferred from them

● This is exploited by lambda expressions which
can be used in the place of anonymous classes

● The easiest information to infer is the name of
the method in the functional interface

● When using lambda expressions the inferred
information will not be written

● The general lambda syntax is the function's
parameter list followed by a -> then the body of
the function

public interface Shape {
 double area (double length);
}

public static void main (String[] args) {
 int x = 5;

 Shape circle = (double radius) -> {
 return Math.PI * Math.pow (radius, 2);
 };

 System.out.println (circle.area (x));
}

6

The arrow (->) is used to separate a functional
interface's parameters and implementation in a
lambda expression.

Lambda II ● What other information can be inferred from the
interface?
○ parameter types
○ return (type)

● With Java being a typed language, we know the
types of the parameters, so that information can
be removed from the lambda expression

● Since we know the function returns, we can
remove that as well

● The curly braces can be removed if the
statement is only one line

● If there is only one parameter, you may also omit
the parenthesis surrounding it

● Reminder: Since lambda are a form of
anonymous class they can also access local
variables directly (as seen in the example)

public interface Shape {
 double area (double length);
}

public static void main (String[] args) {
 int x = 5;
 int height = 10;

 Shape rectangle =
 width -> width * height;

 System.out.println (rectangle.area (x));
}
}

8

Notice the height is specified as a local variable
since it cannot be passed in without changing the
interface.

Lambda III● Methods, just like everything else in Java, have a
memory address associated with them

● For static methods, we can refer to that memory
address using a method reference

○ Interface methods can also be accessed via a
method reference

● A method reference is accessed using the
class/interface name a double colon (::) and the
method's name

○ Example: Iterable::iterator

● Do not include any parameters

● When available, you can simplify a lambda even
further by using a method reference instead of a
local implementation

10

public interface Shape {
 double area (double length);
}

public static double triangleArea (double side) {

 return Math.sqrt(3) * Math.pow (side, 2) / 4;

}

public static void main (String[] args) {
 int x = 5;
 int height = 10;

 Shape triangle = ShapeExample::triangleArea;

 System.out.println (triangle.area (x));
}

The above code is in the ShapeExample class
which was omitted for space reasons.

Method reference

12

Streams● Streams are a sequence of elements
○ Characters in file
○ Bytes over the network
○ Elements in a List
○ etc.

● Java provides a lot of support for Streams

● In particular, today we are going to look as the
stream method in the Collection interface
○ The Collection interface is the base interface

for List, Queue, Set, and others (but not Map)

● The Stream<E> stream() method returns a
Stream of elements in a Collection

● Alone this is not exceptionally useful, but Java
has several methods that work on streams
that will be useful

Streams are a continuous sequence of information
that can be acted on and manipulated.

forEach &
Consumer

● Stream.forEach is used to perform some
operation on each element in the stream

● It's funny looking parameter (Consumer <?
super T> action) accepts an instance of the
Consumer interface
○ Consumer is a functional interface
○ I bet you can see where this is going …

● Consumer's only method takes in an element of
the stream and performs the action on it
○ We can use lambdas to quickly create simple

actions like:
■ Printing the element
■ Performing math on the element
■ Writing it to a file
■ etc.

13

static int sum = 0;
public static void main(String[] args) {
 List<Integer> grades = new ArrayList<>();
 grades.add (54);
 grades.add (85);
 grades.add (97);
 grades.add (72);

 grades.stream().forEach (e -> sum += e);

 grades.stream().forEach
 (System.out::println);

 System.out.println ("Sum = " + sum);

Use forEach to perform some action on each
element of Stream

sum cannot be
local due to
lambda constraints

Method reference

15

filter & Predicate● Another common stream operation is to filter
data on specific criteria before doing other work

● The is accomplished using the
Stream.filter method

● filter accepts a single parameter which is an
instance of the Predicate interface

○ You guessed it, another functional interface

○ It's lambda time!

● filter is different from forEach in that
instead of performing an action, filter returns
a modified Stream

○ The returned stream only contains the elements
that satisfy the Predicate

● For this reason, filter is often used as part of
other Stream operations which can be chained
together using dot notation

public static void main(String[] args) {
 List<Integer> grades = new ArrayList<>();
 grades.add (54);
 grades.add (85);
 grades.add (97);
 grades.add (72);

 // Print only passing grades
 grades.stream().filter(e -> e > 69)
 .forEach(System.out::println);
}

filter is used to reduce the amount of data in a
stream based on some criteria.

Filter on all the
passing grades

Print the filtered stream

Functional
Programming

● In functional programming, functions are first
class citizens

○ They can be assigned to variables
○ Passed as arguments
○ Returned by functions

● In Java this is achieved by creating classes that
are a functional interface

○ I.E. They have only a single method

● Pure functions:

○ Are not effected by state
○ Have no side effects (don’t change state)
○ Always return the same result with the same

arguments

● Since pure functions do not change any state
they can be used without any fear of
concurrency issues

17

“Functional programing is a
declarative programming paradigm
in which function definitions are
trees of expressions that map values
to other values, rather than a
sequence of imperative statements
which update the running state of the
program.”

Functional programming is often associated with
recursion, though that is not the only way to use
it.

18

Why Lambda’s● We often see functional programming
associated with lambda’s why?

● In Java, lambda’s are a shorthand for functional
interfaces

○ This is the tool by which Java manages functions
as first class citizens

● Lambda’s do not allow any local state from a
calling function to be changed

● However, you can still modify global state

○ This is a side effect
○ If they modify state, they are not a pure function

Stream Library
● Stream.filter(predicate) – removes items

from the stream that fail the predicate

○ String.matches(regex) – returns true if a
string matches the specified regular expression

● Stream.foreach(action) – performs the
specified action on each element in a stream

○ Terminates the stream

○ Action is often implemented as a lambda

● Stream.map(mapper) – applies the mapper
‘function’ to each element in a stream

○ Intermediate operation

○ Mapper is often implemented as a lambda

● Stream.collect(collector) – adds each
element in the stream to a collection

○ Terminates the stream

○ May include other reductions on top of adding to
the collection

○ Often used with Collectors 19

Java 8+ has extensive support for streams
which use the functional programming
paradigm.

A select few of the available methods are
detailed on the right.

Functional Programming Term – Reduction

The mechanism for executing functional
programs is reduction. Reduction is the process
of converting an expression to a simpler form.

20

Stream Extensions● IntStream.range(start, end) – creates
a stream of integers from start to end (non-
inclusive)

● Arrays.stream(array) – uses array as the
source of a stream

● Arrays.stream(array, start, end) –
uses a portion of an array (end is non-inclusive)

● Files.lines(path) – uses a file interpreted
as lines as the source of a stream

○ Can use File.toPath() to easily get a file’s
path

● Collection.stream() – uses the collection
as the source of a stream

● Collectors.toList() – accumulates a
stream into a List

In addition to the stream library. There is
support for creating and working with
streams in many other libraries.

A few examples are listed to the left.

Java has way more support for Streams than
what is mentioned here. If you don’t see
something try searching for it.

