Synchronizers — Latches & Barriers

Synchronizers

A synchronizer is any object that coordinates the control of
threads based on its state.

The basic mechanisms in java.util.concurrent are:

— Latches: gate, or switch that allows one or more threads
to wait until a set of operations being performed in other
threads complete.

— Barriers: allows a set of threads to wait for each other at a
common barrier point.

Latches are for waiting for events

— CountDownLatch

Barriers are for waiting for other threads
— CyclicBarrier

CountDownlatch

CountDownlLatches have a count that decrements towards
Zero.

Threads can wait for a latch to reach zero.

When zero is reached, all waiting threads (and any that arrive
later and try to wait) are unblocked.

Latches are one-shot, latch remains open when count ==

The CountDownlLatch class allows us to coordinate the
starting and stopping of threads. Typical uses are :

— we can make several threads start at the same time;

— we can wait for several threads to finish

Using CountDownlLatch for starting and stopping threads in
timing tests. (JCIP p96 - Listing 5.11)
CountDownLatch JavaDoc

http://www.javaconcurrencyinpractice.com/listings/TestHarness.java
http://www.javaconcurrencyinpractice.com/listings/TestHarness.java
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/concurrent/CountDownLatch.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/concurrent/CountDownLatch.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/concurrent/CountDownLatch.html

CountDownlLatch

« Why do we need a latch to coordinate the start of threads in
the timing test example?

 Couldn’t we just create the threads and then start them
from within a loop using thread.start()?

Launch Threads After All Started

class Driver {
private static final int N=.. .;

void main() throws InterruptedException {
CountDownLatch startSignal =
new CountDownLatch(1);

for (inti=0;i<N; ++i) // create and start threads
new Thread(
new Worker(startSignal)
).start();

startSignal.countDown() ;

class Worker implements Runnable {
private final CountDownLatch startSignal;

Worker(CountDownLatch startSignal) {
this.startSignal = startSignal;

public void run() {

try {
startSignal.await();

doWork();
} catch (InterruptedException ex) { } ;

}

void doWork(){ ... }
}

Wait for Worker Threads to Complete

class Driver { class Worker implements Runnable {
private static final int N=.. . private final CountDownLatch startSignal;
private final CountDownLatch doneSignal,
Worker(CountDownLatch startSignal,
CountDownLatch doneSignal) {

void main() throws InterruptedException {
CountDownLatch startSignal =
new CountDownLatch(1);

CountDownLatch doneSignal = this.startSignal = startSignal;
new CountDownLatch(N); this.doneSignal = doneSignal ;

for (inti=0;i<N; +i+) // create and start threads }

new Thread(

new Worker(startSignal, doneSignal) public void run() {
).start(); try {
startSignal.await();
startSignal.countDown() ; doWork();
/I do something } catch (InterruptedException ex) {
Il whatever
doneSignal.await() ; } finally
I/ cleanup doneSignal.countDown()
} \ I3
}

void doWork(){ ... }
}

CyclicBarrier

* The barrier is constructed using:

— number of threads that will be participating in the parallel operation;

— optionally, a method to run at the end of each stage that amalgamates
the results of that iteration

* At the completion of each iteration:

— each thread completes its portion of the work and calls the barrier's
await() method;

— the await() method returns only when:
* all threads have called await();

* the amalgamation method has run (the barrier calls this on the last
thread to call await() before releasing the awaiting threads).

What types of
applications could
you envision using
barriers?

CyclicBarrier Java Doc

Source: http://www.javamex.com/tutorials/threads/

http://docs.oracle.com/javase/1.5.0/docs/api/java/util/concurrent/CyclicBarrier.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/concurrent/CyclicBarrier.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/concurrent/CyclicBarrier.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/concurrent/CyclicBarrier.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/concurrent/CyclicBarrier.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/concurrent/CyclicBarrier.html

CyclicBarrier

* If any of the threads is interrupted or times out
while waiting for the barrier, then the barrier is
"broken" and all other waiting threads receive a
BrokenBarrierException.

Is this the behavior you would expect from CyclicBarrier?
Give an example of why this would/would not be useful.

Coordinating computation in a cellular automaton with
CyclicBarrier. (JCIP p102 — Listing 5.15)

CyclicBarrier Java Doc

Source: http://www.javamex.com/tutorials/threads/

http://www.javaconcurrencyinpractice.com/listings/CellularAutomata.java
http://www.javaconcurrencyinpractice.com/listings/CellularAutomata.java
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/concurrent/CyclicBarrier.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/concurrent/CyclicBarrier.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/concurrent/CyclicBarrier.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/concurrent/CyclicBarrier.html

CountDownlatch or CyclicBarrier?

The CountDownLatch class is useful for various types of "one-
off" thread coordination, in particular setting threads off together.
However, it has at least two features that can be inconvenient in
certain situations:

— a given CountDownlatch can only be used once, making it inconvenient
for operations that occur in stages, with intermediate results from the
different threads needing to be amalgamated between stages;

— the CountDownlatch doesn't explicitly allow one thread to tell the others
to "stop waiting", which is sometimes useful, for example, if an error
occurs in one of the threads.

The CyclicBarrier is generally more useful than
CountDownlLatch in cases where:
— a multithreaded operation occurs in stages or iterations, and;

— asingle-threaded operation is required between stages/iterations, for
example, to combine the results of the previous multithreaded portion.

Source: http://www.javamex.com/tutorials/threads/

Example: Concurrent Step Oriented Game

class Player extends Thread {
private final GameState gs ;
private final CountbDownLatch Tatch ;
private final CyclicBarrier cb ;
// . . . remaining state

Player(GameState gs, CountDownLatch Tatch, CyclicBarrier cb) {
this.gs = gs ; this.latch = Tatch ; this.cb = cb ;
}

public void run() {
latch.await(Q) ;
while(! done()) {
computeNextAction() ;
try {
barrier.await();
} catch (InterruptedeException ex) { return; }
} catch (BrokenBarriereException ex) { return; }

}
}
public Change action() { . . . }
public void computeNextAction() { . . . }
public boolean done() { . . . }

Example: Concurrent Step Oriented Game

class Advance implements Runnable {
private final Player pl ;
private final Player p2 ;
private final GameState gs ;
private final CyclicBarrier cb ;

public void setState(Player pl, Player p2, GameState gs, CyclicBarrier cb) {
this.pl = pl ; this.p2 = p2 ;
this.gs gs ; this.cb = cb ;

}

public void run() {
gs.merge(pl.action(), p2.action()) ;
gs.incrTime() ;
cb.reset() ;
}
}

Example: Concurrent Step Oriented Game

class Driver {
private final CountbDownLatch Tatch = new CountbDownLatch(l) ;

private final Runnable advance new Advance() ;
private final CyclicBarrier cb = new CyclicBarrier(2, advance);

private final GameState gs = new GameState() ;

private final Player pl
private final Player p2

new Player(gs, latch, barrier) ;
new Player(gs, latch, barrier) ;

public Driver() {
advance.setState(pl, p2, gs, cb)
pl.start(Q) ;
p2.start() ;
Tatch.countbown() ;
}
}

class GameState { . . . }

class Change { . . . }

