
Synchronizers – Latches & Barriers

Synchronizers

• A synchronizer is any object that coordinates the control of
threads based on its state.

• The basic mechanisms in java.util.concurrent are:

– Latches: gate, or switch that allows one or more threads
to wait until a set of operations being performed in other
threads complete.

– Barriers: allows a set of threads to wait for each other at a
common barrier point.

• Latches are for waiting for events
– CountDownLatch

• Barriers are for waiting for other threads
– CyclicBarrier

CountDownLatch

• CountDownLatches have a count that decrements towards
zero.

• Threads can wait for a latch to reach zero.

• When zero is reached, all waiting threads (and any that arrive
later and try to wait) are unblocked.

• Latches are one-shot, latch remains open when count == 0

• The CountDownLatch class allows us to coordinate the
starting and stopping of threads. Typical uses are :
– we can make several threads start at the same time;

– we can wait for several threads to finish

• Using CountDownLatch for starting and stopping threads in
timing tests. (JCIP p96 - Listing 5.11)

• CountDownLatch JavaDoc

http://www.javaconcurrencyinpractice.com/listings/TestHarness.java
http://www.javaconcurrencyinpractice.com/listings/TestHarness.java
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/concurrent/CountDownLatch.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/concurrent/CountDownLatch.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/concurrent/CountDownLatch.html

CountDownLatch

• Why do we need a latch to coordinate the start of threads in
the timing test example?

• Couldn’t we just create the threads and then start them
from within a loop using thread.start()?

Launch Threads After All Started

class Driver {

 private static final int N = . . . ;

 void main() throws InterruptedException {

 CountDownLatch startSignal =

 new CountDownLatch(1);

 for (int i = 0; i < N; ++i) // create and start threads

 new Thread(

 new Worker(startSignal)

).start();

 startSignal.countDown() ;

 . . .

 }

 }

 class Worker implements Runnable {

 private final CountDownLatch startSignal;

 Worker(CountDownLatch startSignal) {

 this.startSignal = startSignal;

 }

 public void run() {

 try {

 startSignal.await();

 doWork();

 } catch (InterruptedException ex) { } ;

 }

 void doWork() { ... }

 }

Wait for Worker Threads to Complete

class Driver {

 private static final int N = . . . ;

 void main() throws InterruptedException {

 CountDownLatch startSignal =

 new CountDownLatch(1);

 CountDownLatch doneSignal =

 new CountDownLatch(N);

 for (int i = 0; i < N; +i+) // create and start threads

 new Thread(

 new Worker(startSignal, doneSignal)

).start();

 startSignal.countDown() ;

 // do something

 doneSignal.await() ;

 // cleanup

 }

 }

 class Worker implements Runnable {

 private final CountDownLatch startSignal;

 private final CountDownLatch doneSignal;

 Worker(CountDownLatch startSignal,

 CountDownLatch doneSignal) {

 this.startSignal = startSignal;

 this.doneSignal = doneSignal ;

 }

 public void run() {

 try {

 startSignal.await();

 doWork();

 } catch (InterruptedException ex) {

 // whatever

 } finally

 doneSignal.countDown()

 };

 }

 void doWork() { ... }

 }

CyclicBarrier

• The barrier is constructed using:
– number of threads that will be participating in the parallel operation;

– optionally, a method to run at the end of each stage that amalgamates
the results of that iteration

• At the completion of each iteration:
– each thread completes its portion of the work and calls the barrier's

await() method;

– the await() method returns only when:

• all threads have called await();

• the amalgamation method has run (the barrier calls this on the last
thread to call await() before releasing the awaiting threads).

CyclicBarrier Java Doc

Source: http://www.javamex.com/tutorials/threads/

What types of
applications could
you envision using
barriers?

http://docs.oracle.com/javase/1.5.0/docs/api/java/util/concurrent/CyclicBarrier.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/concurrent/CyclicBarrier.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/concurrent/CyclicBarrier.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/concurrent/CyclicBarrier.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/concurrent/CyclicBarrier.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/concurrent/CyclicBarrier.html

CyclicBarrier

• If any of the threads is interrupted or times out
while waiting for the barrier, then the barrier is
"broken" and all other waiting threads receive a
BrokenBarrierException.

Coordinating computation in a cellular automaton with
CyclicBarrier. (JCIP p102 – Listing 5.15)

CyclicBarrier Java Doc

Source: http://www.javamex.com/tutorials/threads/

Is this the behavior you would expect from CyclicBarrier?
Give an example of why this would/would not be useful.

http://www.javaconcurrencyinpractice.com/listings/CellularAutomata.java
http://www.javaconcurrencyinpractice.com/listings/CellularAutomata.java
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/concurrent/CyclicBarrier.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/concurrent/CyclicBarrier.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/concurrent/CyclicBarrier.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/concurrent/CyclicBarrier.html

CountDownLatch or CyclicBarrier?

• The CountDownLatch class is useful for various types of "one-
off" thread coordination, in particular setting threads off together.
However, it has at least two features that can be inconvenient in
certain situations:

– a given CountDownLatch can only be used once, making it inconvenient
for operations that occur in stages, with intermediate results from the
different threads needing to be amalgamated between stages;

– the CountDownLatch doesn't explicitly allow one thread to tell the others
to "stop waiting", which is sometimes useful, for example, if an error
occurs in one of the threads.

• The CyclicBarrier is generally more useful than
CountDownLatch in cases where:

– a multithreaded operation occurs in stages or iterations, and;

– a single-threaded operation is required between stages/iterations, for
example, to combine the results of the previous multithreaded portion.

 Source: http://www.javamex.com/tutorials/threads/

Example: Concurrent Step Oriented Game
class Player extends Thread {

 private final GameState gs ;

 private final CountDownLatch latch ;

 private final CyclicBarrier cb ;

 // . . . remaining state

 Player(GameState gs, CountDownLatch latch, CyclicBarrier cb) {

 this.gs = gs ; this.latch = latch ; this.cb = cb ;

 }

 public void run() {

 latch.await() ;

 while(! done()) {

 computeNextAction() ;

 try {

 barrier.await();

 } catch (InterruptedException ex) { return; }

 } catch (BrokenBarrierException ex) { return; }

 }

 }

 public Change action() { . . . }

 public void computeNextAction() { . . . }

 public boolean done() { . . . }

}

Example: Concurrent Step Oriented Game

class Advance implements Runnable {

 private final Player p1 ;

 private final Player p2 ;

 private final GameState gs ;

 private final CyclicBarrier cb ;

 public void setState(Player p1, Player p2, GameState gs, CyclicBarrier cb) {

 this.p1 = p1 ; this.p2 = p2 ;

 this.gs = gs ; this.cb = cb ;

 }

 public void run() {

 gs.merge(p1.action(), p2.action()) ;

 gs.incrTime() ;

 cb.reset() ;

 }

}

Example: Concurrent Step Oriented Game

class Driver {

 private final CountDownLatch latch = new CountDownLatch(1) ;

 private final Runnable advance = new Advance() ;

 private final CyclicBarrier cb = new CyclicBarrier(2, advance);

 private final GameState gs = new GameState() ;

 private final Player p1 = new Player(gs, latch, barrier) ;

 private final Player p2 = new Player(gs, latch, barrier) ;

 public Driver() {

 advance.setState(p1, p2, gs, cb)

 p1.start() ;

 p2.start() ;

 latch.countDown() ;

 }

}

class GameState { . . . }

class Change { . . . }

