
Concurrency Culprit
and

Plain 'Ole Java Concurrency

SWEN-342

The Ultimate Culprit - Shared, Mutable State

• Most of your development has been in imperative languages.

• The fundamental operation is assignment to change state.
– Assignable variables are mutable.

– May be exposed as public (bad karma).

– May be exposed via interface methods (medium warm karma).

– Things get tricky very fast when > 1 thread can invoke a mutating
function.

• Three approaches:
– Make things immutable.

– Hide shared state behind sequential access.

– Provide mechanisms to support controlled access to shared, mutable
state.

2

Immutability

• All state in the Class is final.

• Only assignment is in the constructor.

• Mutators now return a new object.

• Examples:
– Points in space (x, y, z)

– Immutable collections

• Performance not as bad as it sounds:
– Compiler optimizations have improved significantly.

– Tail recursion lessens the problems of stack explosion.

– Does require a new way of thinking (Scala, LISP, Clojure)

3

Immutability

// NOTE: Not thread safe!

public class Point {

 private int x ;

 private int y ;

 public Point(int x, int y) {

 this.x = x ;

 this.y = y ;

 }

 public void move(int dx, int dy) {

 x += dx ;

 y += dy ;

 }

 . . .

}

// NOTE: Thread safe

public class Point {

 private final int x ;

 private final int y ;

 public Point(int x, int y) {

 this.x = x ;

 this.y = y ;

 }

 public Point move(int dx, int dy) {

 return new Point(x + dx,

 y + dy) ;

 }

 . . .

}

This is thread safe, but can
it be used the same way?

4

Hide Shared State

• Do not allow direct calls on methods.

• Send messages instead – serialize access.

• State encapsulated in a thread (agent).
– Process can extract messages w/o interference.

– Process can (possibly) serve things out of order.

• Note: Much simpler to scale to multiple processors w/o
shared memory.

• We'll see this in the second part of the course with Agents.

• Note: Can be combined with immutability approaches
– Scala

– Erlang

5

Shared, Mutable State

• Need someway to
– Enforce sequential guarantees in face of concurrency.

– Prevent race conditions.

– Address safety, liveness, fairness concerns.

• We'll start with the barebones, standard Java language
mechanisms offered in the original version (~1995).

• We'll then branch out into other libraries that build on this
base: java.util.concurrent (Java 5, ~2004)

6

To Get Things Going - What's Wrong Here?

@NotThreadSafe

public class UnsafeSequence {

 private int next = 0 ;

 public int getNext() {

 return next++ ;

 }

}

7

This is an example of what type of a race condition?

Is this an “atomic” operation?

Fixing The Example

@ThreadSafe

public class SafeSequence {

 @GuardedBy("this") private int next = 0 ;

 public synchronized int getNext() {

 return next++ ;

 }

}

• Cache's flushed on entry to / exit from getNext()

• One thread at a time can execute getNext()

8

What If Client Wants Two Sequential Numbers?

@ThreadSafe

public class SafeSequence {

 @GuardedBy("this") private int next = 0 ;

 public synchronized int getNext() {

 return next++ ;

 }

}

. . .

SafeSequence s = new SafeSequence() ;

. . .

/* Client(s) */

int i, j ;

i = s.getNext() ; j = s.getNext() ;

assert(j == i + 1) //??

How can this break?

9

What If Client Wants Two Sequential Numbers?

@ThreadSafe

public class SafeSequence {

 @GuardedBy("this") private int next = 0 ;

 public synchronized int getNext() {

 return next++ ;

 }

}

. . .

SafeSequence s = new SafeSequence() ;

. . .

/* Clients */

int i, j ;

synchronized (s) {

 i = s.getNext() ; j = s.getNext() ;

}

assert(j == i + 1) //??

This works, but why does
it have a bad code smell?

10

What If Client Wants Two Sequential Numbers?

@ThreadSafe

public class SafeSequence {

 @GuardedBy("this") private int next = 0 ;

 public synchronized int getNext() {

 return next++ ;

 }

 public synchronized void getVector(int vector[]) {

 for (int i = 0 ; i < vector.length ; ++i) {

 vector[i] = getNext() ;

 }

}

. . .

SafeSequence s = new SafeSequence() ;

. . .

/* Clients */

int v[2] ;

s.getVector(v) ;

Why do we need to switch
to return a vector?

What happens when a thread
holding a lock tries to obtain
that lock again?

11

What If Client Wants Two Sequential Numbers?

@ThreadSafe

public class SafeSequence {

 @GuardedBy("this") private int next = 0 ;

 public synchronized int getNext() {

 return next++ ;

 }

 public synchronized void getVector(int vector[]) {

 for (int i = 0 ; i < vector.length ; ++i) {

 vector[i] = getNext() ;

}

. . .

SafeSequence s = new SafeSequence() ;

. . .

/* Clients */

int v[2] ;

s.getVector(v) ;

Assumes the lock
is reentrant

12

Plain Ole' Java Concurrency (POJC)

• Passive objects (resource managers)

• Object locks

• Active objects
– Threads

– Runnable

– th.start -> th.run() or rn.run()

– Thread.currentThread()

– th.getName(), th.join()

• Synchronized methods and blocks

• Wait / notify / notifyAll

• The nastiness of exceptions

• YUCCH!

13

Thread Safe Objects

• A thread-safe class behaves correctly
– When accessed by multiple threads

– Regardless of scheduling or interleaving

– With no additional synchronization on the part of the caller

• Thread-safe classes encapsulate necessary synchronization so
clients need not provide their own.

• Based on good OO design principles:
– Encapsulate state in private instance variables

– Use immutability where practicable

– Specify state invariants that must be maintained

• Added:
– Locks to maintain invariants in the face of concurrent access

14

Thread Safe Object Consequences

• Stateless objects are automatically thread safe.

• Immutable objects are automatically thread safe.

• Effectively immutable objects are automatically thread safe
– Built from mutable parts.

– Never change those parts after construction.

– Never let a mutable part “escape” from encapsulation.

• Getters

• Parameters

• In all other cases, we have to ensure thread-safety by proper
synchronization of access to mutable state.

15

Synchronization

• Every object has a built-in lock associated with it.

• The lock is acquired via the synchronized keyword.

• The lock is released at the end of the synchronized code block.

 public class Point {

 private int x ;

 private int y ;

 public Point(int x, int y) {

 this.x = x ;

 this.y = y ;

 }

 public void move(int dx, int dy) {

 synchronized(this) {

 x += dx ;

 y += dy ;

 }

 }

 . . .

}

16

Synchronization

• Every object has a built-in lock associated with it.

• The lock is acquired via the synchronized keyword.

• The lock is released at the end of the synchronized method.

 public class Point {

 private int x ;

 private int y ;

 public Point(int x, int y) {

 this.x = x ;

 this.y = y ;

 }

 public synchronized void move(int dx, int dy) {

 x += dx ;

 y += dy ;

 }

 . . .

}

17

Synchronization

• Every object has a built-in lock associated with it.

• The lock is acquired via the synchronized keyword.

• The lock is released at the end of the synchronized code block.

 public class Point {

 private int x ;

 private int y ;

 public Point(int x, int y) {

 this.x = x ;

 this.y = y ;

 }

 public synchronized void move(Point delta) {

 x += delta.getX();

 y += delta.getY();

 }

 . . .

}

We can move to a Point
but this can break. How?

What do we need to do
to fix the problem?

18

Synchronization

• Every object has a built-in lock associated with it.

• The lock is acquired via the synchronized keyword.

• The lock is released at the end of the synchronized code block.

 public class Point {

 private int x ;

 private int y ;

 public Point(int x, int y) {

 this.x = x ;

 this.y = y ;

 }

 public synchronized void move(Point delta) {

 synchronized(delta) {

 x += delta.getX();

 y += delta.getY();

 }

 }

 . . .

}

Fixed that problem but
introduced a new one.
What is it?

19

Thread States

20

When you invoke start(), a new thread is marked ready and is placed in the Thread queue.

A thread is placed in the waiting state, or becomes Not Runnable, when one of these events occurs:

 Its sleep method is invoked.

 The thread calls the wait method to wait for a specific condition to be satisfied.

 The thread is blocking on I/O.

When the run() method terminates, the Thread dies. A dead Thread cannot be restarted.

• Ready
• Running
• Not Runnable - Waiting, Sleeping, Suspended, Blocked
• Dead

Thread State Transitions

21

A thread becomes Runnable when one of these events occurs:

 After the initial call to the Thread’s start method.

 If a thread had been put to sleep, and then the specified number of milliseconds have elapsed.

 If a thread is waiting for a condition, then another object has notified the waiting thread of a change in
condition by calling the notify or notifyAll methods

 If a thread was blocked on I/O, then the I/O has completed.

A thread becomes Not Runnable when one of these events occurs:

 Its sleep method is invoked.

 The thread calls the wait method to wait for a specific condition to be satisfied.

 The thread is blocking on I/O.

A thread dies when:

 Its run method completes.

Threads typically arrange for their own death by executing the run method with some loop condition.

 A dead thread cannot be restarted.

wait(), notify(), notifyAll()

wait() - waits for a condition to occur. This is a method of the Object class and must be called from within
 a synchronized method or block.

When wait is called:

• the current thread is suspended or placed in the wait queue (non-runnable state)

• the synchronization lock for the target object is released, but all other locks held by the thread are retained.

•Note that wait() can also be called with a timeout

notify() - notifies a thread waiting for a condition that the condition has occurred. This is a method of the Object
class and must be called from within a synchronized method or block.

When notify() is called:

• an arbitrary thread waiting for the condition attempts to regain the synchronization lock it relinquished as a
 result of its wait() call.

• After obtaining the lock it resumes execution at the point of its wait()

notifyAll() - works the same as notify except that the steps occur for ALL threads waiting in the wait queue
 for the target object.

(Concurrent Programming in Java - Doug Lea)

State Dependent Behavior

• Assume we have a simple bounded counter.

• Value must range from 0 to some maximum.

• Mutators: up and down

public class SBC {
 private int c = 0 ;
 private final int max ;

 public SBC(int max) {
 this.max = max ;
 }

 public int get() {
 return c ;
 }

 public void up() {
 if (c == max) {
 ???
 }
 c++ ;
 }

 public void down() {
 if (c == 0) {
 ???
 }
 c-- ;
 }
}

What behavior should
we have for the ???s?

What is the invariant
for this class?

23

State Dependent Behavior

• Handling end cases: Sequential code
– Nothing will ever “fix” the problem.

– Need to signal error

– Throw an exception

– Return an error value

• Handling end cases: Concurrent code
– End case may be temporary

– If at max, another thread may do a down and we can proceed

– Therefore, we have an additional option - wait

24

State Dependent Behavior

public class SBC {
 private int c = 0 ;
 private final int max ;

 public SBC(int max) {
 this.max = max ;
 }

 public synchronized int get() {
 return c ;
 }

 public synchronized void up() {
 try {
 while(c == max)
 wait() ;
 } catch(Exception e) {} ;

 c++ ;
 notifyAll() ;
 }

 public synchronized void down() {
 try {
 while(c == 0)
 wait() ;
 } catch(Exception e) {}

 c-- ;
 notifyAll() ;
 }

If you care about safety
why does this code stink?

What could you do to
remove the smell?

25

Why did this change
from an if statement
to a while loop?

State Dependent Behavior

public class SBC {
 private int c = 0 ;
 private final int max ;

 public SBC(int max) {
 this.max = max ;
 }

 public synchronized int get() {
 return c ;
 }

 public synchronized void up() {
 waitAtMax();

 c++ ;
 notifyAll() ;
 }

 public synchronized void down() {
 waitAtMin() ;

 c-- ;
 notifyAll() ;
 }

 private void waitAtMax {
 try {
 while(c == max)
 wait() ;
 } catch (Exception e) {} ;
 }

 private void waitAtMin() {
 . . .
 }

Can you simplify this further?
Would you want to?

26

