
SAFE OBJECT SHARING 
UNDER THE JVM 

1 



Topics 

• Visibility 

• Publication & Escape 

• Thread Confinement 

• Immutability (revisited) – Design Options 

• Safe Publication / Sharing Objects Safely 

 

 

 

2 



Visibility of Reads & Writes 

• No guarantee readers will see effects of writes from different 
threads. 

• To ensure write visibility, must use synchronization. 

public class OOPS { 
    private static bool go = false ; 
    private static int hiker = 24 ; 
 
    private static class RT extends Thread { 
        public void run( ) { 
            while ( ! go ) 
                 Thread.yield( ) ; // means give up CPU to waiting threads 
             } 
             System.out.println( hiker ) ; 
        } 
    } 
 
    public static void main( String[] args) { 
        new RT( ).start( )  ; 
        hiker = 42 ; 
        go = true ; 
    } 
} 

How many threads?  

3 

What gets printed? 

May print 42 and exit (yay!) 

May print 24 and exit (hmm) 

Nothing & never exits (ouch!) 



How long would you expect this program to run? 

4 

public class StopThread{ 

    private static boolean= stopRequested; 

 

    private static class RT extends Thread { 

        public void run( ) { 

            int i = 0; 

            while ( ! stopRequested )     // conventional way to kill a thread 

                 i++;           // don’t use Thread.stop() 

        } 

    } 

    public static void main( String[] args) { 

        new RT( ).start( )  ; 

        Thread.SECONDS.sleep(1);  // Thread.sleep using SECONDS units. 

        stopRequested = true ; 

    } 

} 

In the absence of synchronization, there is no guarantee as to when, if ever, RT will 
see the value of stopRequested that was made by the main thread. 



Compiler “optimization” 

5 

public class StopThread{ 

    private static boolean = stopRequested; 

 

    private static class RT extends Thread { 

        public void run( ) { 

           i = 0; 

           if ( ! stopRequested )   // only need to read stopRequested  

        while (true)         // once, since it is not being altered 

                 i++;              // in this method! 

        } 

    } 

    public static void main( String[] args) { 

        new RT( ).start( )  ; 

        Thread.SECONDS.sleep(1);  // Thread.sleep using SECONDS units. 

        stopRequested = true ; 

    } 

} 



Visibility: Stale Data 

In the absence of synchronization: 
– Compilers can rearrange computations as long as this is invisible to the 

thread executing the code. 

– JIT optimizer can rearrange the emitted host processor instructions. 

– Multiple processors are free to cache anything. 

MORAL 
 

Reasoning about the order in which memory operations will 
happen w/o proper synchronization is nearly always incorrect. 

6 



Declaring a variable volatile 

7 

public class StopThread{  //This works as expected! 

    private static volatile boolean = stopRequested; 

 

    private static class RT extends Thread { 

        public void run( ) { 

            int i = 0; 

            while ( ! stopRequested ) 

                 i++;  

        } 

    } 

    public static void main( String[] args) { 

        new RT( ).start( )  ; 

        Thread.SECONDS.sleep(1);  // Thread.sleep using SECONDS units. 

        stopRequested = true ; 

    } 

} 

Volatile tells the compiler/VM to disable optimizations and always read the 
variable from main memory. 



Volatility and Locking 

• Volatility only guarantees atomicity on per-variable access. 

• Locking (synchronized) guarantees atomicity of a sequence 
of changes. 

• Only use volatile on a variable A when 
– Writes to A do not depend on current value or 

Can guarantee only one writing thread for A. 

– A is not part of state invariant involving other variables. 

– Locking not required for any other reason when A is accessed. 



Publication & Escape 

• An object is published when made available to code outside 
current class’s scope.  
– Putting it in a public instance or static variable. 

– Returning it from a (non-private) method. 

– Passing it as an argument to a method in another class. 

– Caveat: Passing object of an inner class to a method publishes the 
parent object to the method as well. 

• Publishing one object may indirectly publish others. 

• Publishing an object that should not have been means the 
object has escaped. 
– From sequential systems, we know this 

• Will break encapsulation. 

• May lead to invariant violations (e.g., class's internal rules). 

– Publishing an object before fully constructed can compromise safety 
(adherence to its contract). 

9 



Publication: Effects of Object Escape 

MORAL 
If encapsulation is valuable in sequential systems, it is essential 
under concurrency. 

10 

public class UnsafeStates{ 

   private String[] states = new String[] { “AK”, “AL”, ….}; 

 

 public String[] getStates() { 

  return states: 

   } 

} 

• What was supposed to be private has escaped and effectively made public. 
 
• In a threaded application this is much more difficult to detect. 



Publication: Practice Safe Construction 

• Objects are in predictable state only after constructor returns. 

• If this escapes during construction, threads may see inconsistent 
state. 

• Do not pass this to methods in other objects in constructor. 

• Do not start threads in constructor (creating them is OK). 

• Do not set GUI listeners in constructor. 

• Use factories 

 

DO NOT ALLOW this TO ESCAPE DURING CONSTRUCTION!  

11 



Publication: Factories Can Prevent this Escaping 

public class DemoT { 
  private final Thread dt ; 
 
  private DemoT() { 
    dt = new Thread() ; 
  } 
 
  public static DemoT newDemo() { 
    DemoT demo = new DemoT() ; 
    demo.dt.start() ; 
    return demo; 
  } 
} 
 
 . . . 
 
DemoT demo_t = DemoT.newDemo() ; 

public class DemoL{ 
  private final EvListener evl; 
 
  private DemoL() { 
    evl = new EvListener() ; 
  } 
 
  public static DemoL newDemo(EvSource es) { 
    DemoL demo = new DemoL() ; 
    es.setListener( demo.evl ) ; 
    return demo ; 
  } 
} 
 
 . . . 
 
DemoL demo_l = DemoL.newDemo(evSource) ; 

12 



Thread Confinement 

• Objects accessible from only one thread are thread confined. 
– Thus they are thread safe even if they are not in and of themselves. 

– Example: Swing components - only accessed by the event thread. 

– Example: JDBC Connections. 

• Thread confinement approaches: 
– Ad hoc - Confinement is responsibility of implementation. 

– Stack Confinement– Object references only available via local variables 

• What do we have to be careful about when using this approach? 

– ThreadLocal (library support) 

• Java class that maintains a table associating object references with Thread 
instances – eliminates sharing 

• What code smell  could thread-local variables potentially introduce? 

 

 

Data that aren't shared need not be synchronized. 

13 



ThreadLocal Confinement 

• ThreadLocal is for global state that is on a per-thread basis. 

• Example: Singletons in sequential system duplicated on per-thread basis. 

• Our example: Per thread logging to Vector of Strings. 

import java.util.Vector ; 
 
public class Logger { 
    private Vector<String> log = 
        new Vector<String>() ; 
 
    private Logger(){} 
 
    public void logit(String message) { 
        log.add(message) ; 
    } 
 
    public void dump(String prefix) { 
        for ( String s : log ) { 
            System.out.println(prefix + 
                ": " + s) ; 
        } 
    } 

    private static Logger theLog = null ; 
 
    public static Logger theLog() { 
        if ( theLog == null ) { 
            theLog = new Logger() ; 
        } 
        return theLog ; 
    } 
} 
 

Classic Singleton Logger 

14 



ThreadLocal Confinement 

import java.util.Vector ; 
 
public class LoggerT { 
    private Vector<String> log = 
        new Vector<String>() ; 
 
    private LoggerT(){} 
 
    public void logit(String message) { 
        log.add(message) ; 
    } 
 
    public void dump(String prefix) { 
        for ( String s : log ) { 
            System.out.println(prefix + 
                ": " + s) ; 
        } 
    } 

    private static ThreadLocal<LoggerT> tl_log = 
        new ThreadLocal<LoggerT>() ; 
 
    public static LoggerT theLog() { 
        if ( tl_log.get() == null ) { 
            tl_log.set( new LoggerT() ) ; 
        } 
        return tl_log.get() ; 
    } 
} 
 

ThreadLocal - per thread Singleton logger 

• Change the Singleton to a ThreadLocal. 

• Interface to the class is unchanged - just the internal details of the factory 
are altered 

15 



Immutability 

• An object is immutable (in Java) iff 

– Its state cannot be modified after construction. 

– All its fields are final;  AND 

– It is properly constructed (this does not escape). 

 

• An object whose fields are all final may still be 
mutable. 

 

• Declaring fields final documents to future maintainers 
which fields are not expected to change    

16 

How is this 
Possible? 

Make all fields final unless they need to be mutable. 



Safe Publication 

• Published objects must be published safely. 

• Chief violation of safety is publishing partially constructed objects. 

• A consistent view of object state requires synchronization. 

 

 
 

17 

public class Bad { 
  public Holder h = null ; 
 
  public void init() { 
    h = new Holder( 42 ) 
  } 
} 

public class Holder { 
  private int n ; 
 
  public Holder(int n) { 
    this.n = n ; 
  } 
 
  public int getN() { 
    return n ; 
  } 
 
  public void assertSane() { 
    if ( n != n ) { 
      throw AssertionError("OOPS") ; 
    } 
  } 
} 

Is this safe? 
Why or Why Not? 



Safe Publication: Mutable Objects 

• Published objects must be published safely. 

• The chief violation of safety is publishing partially constructed objects. 

public class Bad { 
  public Holder h = null ; 
 
  public void init() { 
    h = new Holder( 42 ) 
  } 
} 

public class Holder { 
  private int n ; 
 
  public Holder(int n) { 
    this.n = n ; 
  } 
 
  public int getN() { 
    return n ; 
  } 
 
  public void assertSane() { 
    if ( n != n ) { 
      throw AssertionError("OOPS") ; 
    } 
  } 
} 

Need to synchronize 
here 

18 



Safe Publication: Immutable Objects 

• Immutable objects can be used even if safe reference publication is not 
synchronized. 

public class Bad { 
  public Holder h = null ; 
 
  public void init() { 
    h = new Holder( 42 ) 
  } 
} 

public class Holder { 
  private final int n ; 
 
  public Holder(int n) { 
    this.n = n ; 
  } 
 
  public int getN() { 
    return n ; 
  } 
 
  public void assertSane() { 
    if ( n != n ) { 
      throw AssertionError("OOPS") ; 
    } 
  } 
} 

19 



Safe Sharing Heuristics 

• Thread confined 
– Shared only within the thread. 

– No synch. needed. 

• Shared read-only 
– Objects that are not mutated can be shared w/o synch. 

– Includes immutable & effectively immutable objects. 

• Shared thread-safe objects 
– Have necessary synchronization "built-in" 

– Can access from multiple threads w/o special synch. 

• Guarded 
– Not inherently thread-safe. 

– Only access when specific lock is held. 

– Threads must agree on which lock is required! 

20 


