
JOHN D. MUSA
Software Reliability Engineering and Testing Courses

 More Reliable Software Faster and Cheaper

 Copyright John D. Musa 1996-2006 1

An Introduction to Software
Reliability Engineering

Laurie Williams
williams@csc.ncsu.edu

About the tutorial author

SREH9H

2

John D. Musa

JOHN D. MUSA
Software Reliability Engineering and Testing Courses

 More Reliable Software Faster and Cheaper

 Copyright John D. Musa 1996-2006 2

Tutorial Goal

   You will be introduced to techniques that will help you
to engineer reliability …

   … develop more reliable software faster and cheaper;
… making it more competitive in the marketplace;
… enhancing your organization�s market share and
profitability;

   … and increasing your value as a professional!

   This prepares you for further learning, either a 2-day
course [1] or self study using the book Software
Reliability Engineering: More Reliable Software Faster
and Cheaper – Second Edition [3].

© 2014 Laurie Williams

Tutorial Objectives

Upon completing this tutorial, you will be able to:
1. Define a software-based product you plan to

develop in SRE terms
2.  Express relative use of a product�s principal

functions by developing operational profiles
3.  Employ operational profiles and criticality information

to:
A.  Greatly increase efficiency of development and test

by optimally distributing people resources, test
cases, and test time over operations

B.  Invoke test so as to much more accurately represent
field use

C.  Plan feature release dates to better match customer
needs

© 2011 Laurie Williams

JOHN D. MUSA
Software Reliability Engineering and Testing Courses

 More Reliable Software Faster and Cheaper

 Copyright John D. Musa 1996-2006 3

Tutorial Objectives

4.  Determine the reliability / availability your customers
need for a product, making optimal tradeoffs with cost
and time of delivery

5.  Engineer software reliability strategies to meet
reliability / availability objectives more efficiently

6.  Identify failures during system test and process failure
data to track reliability growth of systems, guiding
product release

7.  Discuss how these practices can be used in your
environment

© 2011 Laurie Williams

 Copyright Laurie Williams 2014

6

Software Reliability Engineering –
Developed to Address the Problem
1. SRE is primarily quantitative.
2.  You add and integrate software reliability

engineering (SRE) with other good processes and
practices; you do not replace them.
A. Development process is not externally

imposed.
B.  You use quantitative information to choose the

most cost-effective software reliability
strategies for your situation.

Overall … some simple ideas that will make you
change the way you think about things that will
improve your reliability … and some more
complicated techniques for even more benefit.

JOHN D. MUSA
Software Reliability Engineering and Testing Courses

 More Reliable Software Faster and Cheaper

 Copyright John D. Musa 1996-2006 4

SREH9H

7

Outline

1. Introduction
2. SRE Process
3. Define the Product
4. Implement Operational Profiles
5. Engineer �Just Right� Reliability
6. Prepare for Test
7. Execute Test
8. Guide Test
9. Conclusion & Deploy SRE

 Copyright Laurie Williams 2014

SREH9H

8

Activities of SRE Process and Relation
 to Software Development Process

SRE Process

Design and
Implementation

Requirements
and Architecture Test

5. Execute Test 4. Prepare for Test

6. Guide Test

1. Define the Product

2. Implement Operational
 Profiles

3. Engineer �Just Right�
Reliability

 Copyright Laurie Williams 2014

JOHN D. MUSA
Software Reliability Engineering and Testing Courses

 More Reliable Software Faster and Cheaper

 Copyright John D. Musa 1996-2006 5

Faults vs. Failures

© 2014 Laurie Williams

Mindset

•  All faults should not be considered equally.
•  Some faults are likely to surface as failures in normal

use and will affect the reliability of the product in the
eyes of the customer.

•  Other faults can easily remain latent forever and will,
therefore, never affect the reliability of the product
product in the eyes of the customer.

•  SRE is a system to get out the faults likely to affect
product reliability.

© 2014 Laurie Williams

JOHN D. MUSA
Software Reliability Engineering and Testing Courses

 More Reliable Software Faster and Cheaper

 Copyright John D. Musa 1996-2006 6

Reliability

•  Reliability: the probability that a system will
continue to function without failure for a specified
number of natural units or a specified time
–  Correctness, safety, operational aspects of usability

and user-friendliness
–  �time� may be in natural or time units

•  Examples of �natural� units – runs, pages of output,
transactions, telephone calls, jobs, semiconductor
wafers, queries, API calls

–  Failure intensity = failures per natural or time unit

Availability

•  Availability: average (over time) probability
that a system is currently functional in a
specified environment OR ratio of uptime to
the sum of uptime plus downtime
–  Downtime for a given interval is the product of

the length of the interval, the failure intensity,
and the mean time to repair (MTTR)

•  10 hours * .1 failures/hour * .5 hours/failure = .5 hours

–  MTTR is average time required to restore the
data for a program, reload the program, and
resume execution

–  Availability = 9.5/10 = .95 = 95%

JOHN D. MUSA
Software Reliability Engineering and Testing Courses

 More Reliable Software Faster and Cheaper

 Copyright John D. Musa 1996-2006 7

13

Running Example - FONE
FOLLOWER (FF) - Product

Description
1. Subscriber calls FF, enters planned phone

numbers (forwardees) to which calls are to be
forwarded vs time.

2. FF forwards incoming calls (voice or fax) from
network to subscriber as per program.
Incomplete voice calls go to pager (if
subscriber has one) and then voice mail.

3. Subscribers view service as the combination of
standard telephone service with call
forwarding.

SRE Process

 Copyright Laurie Williams 2014

Define the product

Figure from Musa, J., Software Reliability Engineering, 2004.

JOHN D. MUSA
Software Reliability Engineering and Testing Courses

 More Reliable Software Faster and Cheaper

 Copyright John D. Musa 1996-2006 8

SREH9H

15

Define the Product

Define the Product

1. Who is supplier?
2. Who are customers and users?
3. List associated systems

 associated system: base product or system
specially related to it that is tested separately
 A. Base product
 B. Major variations of base product (for
substantially different environments, platforms, or
configurations)

4. Consider frequently used supersystems (whole
context) of base product or variations

Remember: User can’t separate out new system
from whole system when a problem occurs

 Copyright Laurie Williams 2014

FF Product Description

A subscriber calls FF and enters the phone numbers to which
calls are to be forwarded as a function of time. Incoming calls
(voice or fax) from the network to the subscriber are forwarded as
per the program. Incomplete voice calls go to a pager (if the
subscriber has paging service) and then voice mail. FF uses a
vendor-supplied operating system of unknown reliability.
Subscribers view the service as the combination of standard
telephone service with call forwarding.

The supplier is a major telecommunications systems developer.
The customers are telecommunications operating companies,
and they sell FF service to a wide range of businesses and
individuals.

SREH9H

 Copyright John D. Musa 1996-2006

16

JOHN D. MUSA
Software Reliability Engineering and Testing Courses

 More Reliable Software Faster and Cheaper

 Copyright John D. Musa 1996-2006 9

FF “Define the Product”

•  base product: FF
–  variation: FF Japan

•  supersystem of base product: US telephone
network and FF
–  supersystem of variation: Japanese telephone

network and FF Japan

SREH9H

 Copyright John D. Musa 1996-2006

17

SREH9H

18

Activities of SRE Process and Relation
 to Software Development Process

Implement OPs

Design and
Implementation

Requirements
and Architecture Test

5. Execute Test 4. Prepare for Test

6. Guide Test

1. Define the Product

2. Implement Operational
 Profiles

3. Engineer �Just Right�
Reliability

 Copyright Laurie Williams 2014

JOHN D. MUSA
Software Reliability Engineering and Testing Courses

 More Reliable Software Faster and Cheaper

 Copyright John D. Musa 1996-2006 10

Operations - 1

•  Operation: a major system task performed for an
initiator with control returned to the system when
it is complete [so a new operation can start].
–  �major� implies it is related to a functional requirement

or feature, not a subtask in the design

–  Use cases (and user stories in agile software

development) are very operation-oriented.

 Copyright Laurie Williams 2014

Operations - 2

Illustrations - FF:
Process fax call, Enter forwardees, Audit section of
phone number database

Other Illustrations:
Process transactions (purchases, sales, service
deliveries, reservations)
Respond to events (alarms, mechanical movements,
changes in state)
Produce reports

 Copyright Laurie Williams 2014

JOHN D. MUSA
Software Reliability Engineering and Testing Courses

 More Reliable Software Faster and Cheaper

 Copyright John D. Musa 1996-2006 11

Operational Profiles

•  An operational profile is a complete set of the operations
(major system logical tasks) of a system with their
probability of occurrence [e.g. the requirements and the
probability of how often the users will use each
requirement/scenario].

•  You can use the operational profile to prioritize all
aspects of development and to allocate resources
accordingly.

 Copyright Laurie Williams 2014

Simple Operational Profile Example

•  Suppose you have a system with operations A and B. Operation
A executes 90% of the time and Operation B, 10%. Assume
each operation has 10 faults and you have 10 hours of test and
debugging effort available. Finding and fixing each faults
requires 1 hour of effort.
–  How many �operational� faults if you spend 5 hours on each?

•  Spend equal amount of time on each
•  5 faults remain in each
•  .9(5) + .1(5) = 5 �operational� faults (faults likely to be encountered by

customer)
–  How many �operational� faults if you spend your time relative to the

operational profile?
•  Spend 9 hours on A, 1 hour on B
•  1 fault remains in A, 9 faults remain in B
•  .9(1) + .1(9) = 1.8 �operational� faults

 Copyright Laurie Williams 2014

JOHN D. MUSA
Software Reliability Engineering and Testing Courses

 More Reliable Software Faster and Cheaper

 Copyright John D. Musa 1996-2006 12

Developing an Operational Profile

•  Often done by systems engineers/marketing and product
personnel, but system testers should be involved too.

•  Five principle steps in developing an operational profile:
1.  Identify initiators of operations
2.  Create operations list
3.  Review operations list
4.  Determine occurrence rates
5.  Determine occurrence probabilities

•  All started in the requirements phase and refined iteratively in
future phases.

•  Generally takes 1-2 weeks for small products, longer with
larger products, but decreases after first release.

 Copyright Laurie Williams 2014

1. Identify the Initiators of Operations

•  Customer type: set of customers (organizations or
individuals who acquire but may not directly employ your
product) who have similar businesses and hence tend to
have the same user types.

•  User types: set of users (individuals who directly employ the
product) who tend to employ the product in the same way …
list developed by considering customer types (above).
–  User is anyone who can initiate an operation on the system
–  Look at product business case, marketing data to obtain
–  Consider job roles
–  Don�t forget maintainers and administrators
–  E.g. FF: subscriber, system administrator

 Copyright Laurie Williams 2014

JOHN D. MUSA
Software Reliability Engineering and Testing Courses

 More Reliable Software Faster and Cheaper

 Copyright John D. Musa 1996-2006 13

1. Identify the Initiators of Operations
(cont�d)

•  External systems that initiate operations on the system
–  e.g. FF: the network

•  System under study if it initiates operations itself
–  e.g. FF: FF

–  … think “actor” from a use case perspective

 Copyright Laurie Williams 2014

2. Create the Operations List
•  Generate an operations list for each initiator-type
•  Consult system requirements, work process flow

diagrams, user manuals, prototypes, and information on
previous releases

•  Meet with systems engineers, human factors engineers,
marketing personnel and expected users

•  Be sure to include �housekeeping operations� that
(re)initialize or clean up data

•  Rough guideline: each operation should have more than
100 deliverable source lines different from another
operation.
–  High probability each test case would reveal unique faults.

•  We should execute each operation at least once in test
–  unless it has a very low occurrence probability and is non-critical

 Copyright Laurie Williams 2014

JOHN D. MUSA
Software Reliability Engineering and Testing Courses

 More Reliable Software Faster and Cheaper

 Copyright John D. Musa 1996-2006 14

Create Operations List:
 Illustration - FF

 Copyright Laurie Williams 2014

3. Review the Operations List

•  Identify at least one expert for each initiator-type for the
operations list to be as complete as possible

•  Check to make sure:
–  Operations are of short duration in execution time (want to run lots

of tests rather than a few long tests)
–  Each operation has substantially different processing from the

others.
–  Operations are well-formed (sending messages and displaying

data are PART of the operation, not the operation itself)
–  The list is complete with high probability
–  The total number of operations is reasonable (taking into account

the budget)
•  20 to several hundred operations, typically, depending on size
•  Cost to develop operational profile: roughly half a staff hour per

operation
•  The list will evolve over time and as the system is

developed (need to adjust profile)

 Copyright Laurie Williams 2014

JOHN D. MUSA
Software Reliability Engineering and Testing Courses

 More Reliable Software Faster and Cheaper

 Copyright John D. Musa 1996-2006 15

4. Obtaining Occurrence Rates
•  Occurrence rate: number of occurrences of the operation

divided by the time the total set of operations running
•  Where to find data

–  Look for existing field data from previous release/similar system
–  Look at system logs
–  Search for existing business data; product business case
–  Ask a marketer (engineers should network with marketers!)
–  Record field operations from current product (data for old

operations)
–  No recourse . . . Make estimates

•  Group low probability operations (or all of them) and assign equal probability to
each

•  Apply the Delphi method.

•  Instrument your code so that it identifies the operations that
were executed . . . for future occurrence data.

 Copyright Laurie Williams 2014

Determine Occurrence Rates:
Illustration - FF

 Copyright Laurie Williams 2014

JOHN D. MUSA
Software Reliability Engineering and Testing Courses

 More Reliable Software Faster and Cheaper

 Copyright John D. Musa 1996-2006 16

5. Determine Occurrence
Probabilities

•  Divide occurrence rate of each operation by
the total operation occurrence rate.

•  Sort in order of descending probabilities.

 Copyright Laurie Williams 2014

Determine Occurrence
Probabilities: Illustration - FF

 Copyright Laurie Williams 2014

JOHN D. MUSA
Software Reliability Engineering and Testing Courses

 More Reliable Software Faster and Cheaper

 Copyright John D. Musa 1996-2006 17

Applying Operational Profiles

•  Proportionally distribute the number of new test cases
and other validation and verification (V&V) activities
according to the operational profile
–  Maximize chances the most important faults for reliability

considerations are found

•  But, this information can be used in other ways as well:
–  Aids in determining a competitive release strategy

•  Implement the most critical and/or most used in early releases
–  Allocate development resources to best serve the needs of the

customer as quickly as possible
•  Pareto principle (a small number of things occur most of the time): in a

typical software system, 20% of the software operations may provide 80%
of the functionality the customer wants

 Copyright Laurie Williams 2014

Operational Development -
Illustration

Proportion of operations developed

Proportion of use/value represented

Release 1

Release 2

Release 3

Finish highly used operations earlier (Release 1);
delay less-used operations (Releases 2,3)

 Copyright Laurie Williams 2014

JOHN D. MUSA
Software Reliability Engineering and Testing Courses

 More Reliable Software Faster and Cheaper

 Copyright John D. Musa 1996-2006 18

Summary

•  The operational profile is developed to systematically
determine how to proportion effort.
–  Operation initiators are enumerated
–  The operations they users want to perform are

enumerated
–  The proportion of time each type wants to perform

each operation are estimated

© 2011 Laurie Williams

SREH9H

36

Activities of SRE Process and Relation
 to Software Development Process

Engineer �Just Right� Reliability

Design and
Implementation

Requirements
and Architecture Test

5. Execute Test 4. Prepare for Test

6. Guide Test

1. Define the Product

2. Implement Operational
 Profiles

3. Engineer �Just Right�
Reliability

 Copyright Laurie Williams 2014

JOHN D. MUSA
Software Reliability Engineering and Testing Courses

 More Reliable Software Faster and Cheaper

 Copyright John D. Musa 1996-2006 19

Steps to engineering �just right�
reliability for your product

1.  Set a system failure intensity objective … relative to
the importance of quality for your product

2.  From the system failure intensity objective, determine
the FIO for the software under development

3.  Choose software reliability strategies to optimally
meet the FIO for the software under development

 Copyright Laurie Williams 2014

System failure intensity guidelines

Table from Musa, J., Software Reliability Engineering, 2004.

 Copyright Laurie Williams 2014

JOHN D. MUSA
Software Reliability Engineering and Testing Courses

 More Reliable Software Faster and Cheaper

 Copyright John D. Musa 1996-2006 20

Steps to engineering �just right�
reliability for your product

1.  Set a system failure intensity objective … relative to
the importance of quality for your product

2.  From the system failure intensity objective, determine
the FIO for the software under development

3.  Choose software reliability strategies to optimally
meet the FIO for the software under development

 Copyright Laurie Williams 2014

Base product FIO

•  Customer don’t care where the failures come from … the
hardware, the operating system, your base product, or
the new software you are developing

•  You can only find the FIO of your product by seeing how

much is left for you after you take all “their” FIOs out.

•  Example (Fone Follower):

–  System FIO 200 failures/M calls
–  US Telephone network FIO - 95 failures /M calls
–  Hardware -1 failure /M calls
–  Operating system - 4 failures/M calls
–  Base product FIO 100 failures/M calls

 Copyright Laurie Williams 2014

JOHN D. MUSA
Software Reliability Engineering and Testing Courses

 More Reliable Software Faster and Cheaper

 Copyright John D. Musa 1996-2006 21

Steps to engineering �just right�
reliability for your product

1.  Set a system failure intensity objective … relative to
the importance of quality for your product

2.  From the system failure intensity objective, determine
the FIO for the software under development

3.  Choose software reliability strategies to optimally
meet the FIO for the software under development

 Copyright Laurie Williams 2014

Software reliability strategies

•  A software reliability strategy is a development
activity that reduces failure intensity, incurring
development cost and perhaps development
time

•  Plan software reliability strategy in the
requirements phase, focusing on new
operations of release.

•  A software reliability strategy may be selectable
(requirements, design, or code reviews) or
controllable (amount of system test, amount of
fault tolerance).

 Copyright Laurie Williams 2014

JOHN D. MUSA
Software Reliability Engineering and Testing Courses

 More Reliable Software Faster and Cheaper

 Copyright John D. Musa 1996-2006 22

Software reliability strategies
(cont�d)

•  Basic failure intensity is the failure intensity that would
exist at the start of system test for a project without
reviews or fault tolerance.
–  Similar across many products given that no software

reliability strategies have been applied

•  FIRO is the ratio of the basic failure intensity to the
software under development failure intensity
objective.

•  Choice of strategy based on predicting the required
failure intensity reduction objective (FIRO)
–  FIRO is the failure intensity reduction that must be obtained

through software reliability strategies

 Copyright Laurie Williams 2014

Software reliability strategies
(cont�d)

•  Possible reliability strategies:

–  Use of requirements review
–  Use of design review
–  Use of code review
–  Use of unit testing
–  Degree of fault tolerance designed into system

•  Fault tolerance is the ability of a system or component to continue normal
operation despite the presence of hardware or software fault.
[IEEE]

–  Amount of system test

 Copyright Laurie Williams 2014

JOHN D. MUSA
Software Reliability Engineering and Testing Courses

 More Reliable Software Faster and Cheaper

 Copyright John D. Musa 1996-2006 23

Illustration - Ultrareliable System

 Allocate FIRO among reliability strategies

Engineer �Just Right� Reliability - Choose SR Strategies – Ultrareliable System

FIRO = 29000

Step

Reliability Strategy

FIRO
Alloc.

Remaining
FIRO

 1 Early system test 8 3625
2 Requirements reviews 2 1812
3 Design reviews 2 906
4 Code reviews 2 453

 Copyright Laurie Williams 2014

SREH9H

46

Activities of SRE Process and Relation
 to Software Development Process

Prepare for Test

Test

2. Implement Operational
 Profiles

Design and
Implementation

Requirements
and Architecture

5. Execute Test 4. Prepare for Test

6. Guide Test

1. Define the Product

3. Engineer �Just Right�
Reliability

 Copyright Laurie Williams 2014

JOHN D. MUSA
Software Reliability Engineering and Testing Courses

 More Reliable Software Faster and Cheaper

 Copyright John D. Musa 1996-2006 24

Prepare for Test
1. For each base product and variation:

A. Specify new test cases for new operations for
current release, based on the operational profile
B. Specify test procedure, based on the test
operational profile and traffic level

2. Provide for:
 A. Setup and invocation of test cases
 B. Recording of run executed (operation, test case,

indirect input variables) and outputs
 C. Cleanup
 D. Documentation of expected behavior of test cases

 Copyright Laurie Williams 2014

Step 1: Estimate the number of new
test cases for current release

•  Estimate the number of test cases you need
–  History of your project�s test cases/line of executable

code
–  Industry data (depends on failure intensity reduction

objective):
•  2-3 test cases/thousand lines of code for moderate reliability
•  20-33 test cases/thousand lines of code for high reliability

–  FF example:
•  8 new test cases/KLOC* x 80 KLOC = 640 test cases

*KLOC = thousand lines of code

 Copyright Laurie Williams 2014

JOHN D. MUSA
Software Reliability Engineering and Testing Courses

 More Reliable Software Faster and Cheaper

 Copyright John D. Musa 1996-2006 25

Step 2: Estimate the number of new
test cases you can prepare, staff

hours
•  Estimate the number you have the capacity to

prepare
–  Industry data: 0.4-16 hours/test cases (preparation)
–  Your knowledge of staff hours available for

preparation
•  Example:

–  18 weeks, 720 hours
–  Available staff 2.5

•  1800 staff hours
–  3 hours/test case
–  600 new test cases

 Copyright Laurie Williams 2014

Step 3: Estimate the number of new
test cases you can prepare, budget

•  Estimate the number you have the capacity to
prepare based upon the test case budget (% of
software development budget)

•  Example
–  Software development budget $2M
–  Test case budget 10% of budget
–  Test case preparation cost $250/test case
–  Test case budget $200K
–  $200K / $250 per test case = 800 new test cases

 Copyright Laurie Williams 2014

JOHN D. MUSA
Software Reliability Engineering and Testing Courses

 More Reliable Software Faster and Cheaper

 Copyright John D. Musa 1996-2006 26

Step 4: Decide how many test
cases you will prepare

•  Take minimum of Steps 2 and 3
•  Example

–  Minimum based upon Step 2: 600 new test cases
–  Not that far away from “needed” (Step 1)

•  So we will feel OK
•  If the difference is large, we must consider

implications to quality and/or resource

 Copyright Laurie Williams 2014

© 2011 Laurie Williams

Step 5: Distributing test cases
among new operations

•  Based upon occurrence
proportion for new
operation
–  Proportion of occurrences

of new operation with
respect to occurrences of
all new operations for a
release.

–  First release: occurrence
proportion = occurrence
probability

–  Future releases:
occurrence probability of
operation/sum of
occurrence probabilities of
all new operations

Tables from Musa, J., Software Reliability Engineering, 2004.

 Copyright Laurie Williams 2014

JOHN D. MUSA
Software Reliability Engineering and Testing Courses

 More Reliable Software Faster and Cheaper

 Copyright John D. Musa 1996-2006 27

Step 6: Distribute New Test Cases
Among New Operations

  Illustration - FF - Base product:

Operation

Occ. Prop.
Init. New

TC
Proc. voice call, no pager, ans. 0.21 105
Proc. voice call, pager, ans. 0.19 95
Proc. fax call 0.17 85
Proc. voice call, pager, ans. on page 0.13 65
Proc. voice call, no pager, no ans. 0.10 50
Proc. voice call, pager, no ans. on page 0.10 50
Enter forwardees 0.09 45
Audit section – phone number data base 0.009 5
Add subscriber 0.0005 0
Delete subscriber 0.0005 0
Recover from hardware failure 0.000001 0

Total 1 500

 Copyright Laurie Williams 2014

© 2011 Laurie Williams

Step 7: More considerations

•  Must have at least
one test case per
operation

Table from Musa, J., Software Reliability Engineering, 2004.

 Copyright Laurie Williams 2014

JOHN D. MUSA
Software Reliability Engineering and Testing Courses

 More Reliable Software Faster and Cheaper

 Copyright John D. Musa 1996-2006 28

Step 8: And more considerations
•  Critical operations – one for

which successful execution
adds a great deal of extra
value and failure causes a
great deal of impact with
respect to human life, cost or
system capability

•  Acceleration factor (A):
–  FIO (system)/FIO (operation)

•  Example:
–  FIO system = 100 failures/Mcalls
–  FIO �recover from hardware

failures� = .025 failures/Mcalls
–  Acceleration factor (A)=4000
–  Test cases=

•  (500)(0.000001)(4000) = 2

Table from Musa, J., Software Reliability Engineering, 2004.

 Copyright Laurie Williams 2014

Step 9: Using judgment
•  Adjust number of test cases based

upon other judgment
–  Number of equivalence classes < number

of test cases
–  Number of equivalence classes > number

of test cases
–  Other …

 Copyright Laurie Williams 2014

JOHN D. MUSA
Software Reliability Engineering and Testing Courses

 More Reliable Software Faster and Cheaper

 Copyright John D. Musa 1996-2006 29

Step 10: What if there are too many
test cases now?

•  Try to do them all
•  Redistribute by ratio:

–  Original number of test cases/new number of
test cases

–  Make sure you don�t go below one test case
per operation

–  Combine operations if you need to !
•  Multiple equivalence classes

 Copyright Laurie Williams 2014

SREH9H

58

Activities of SRE Process and Relation
 to Software Development Process

Execute Test

Design and
Implementation

Requirements
and Architecture Test

5. Execute Test 4. Prepare for Test

6. Guide Test

1. Define the Product

2. Implement Operational
 Profiles

3. Engineer �Just Right�
Reliability

 Copyright Laurie Williams 2014

JOHN D. MUSA
Software Reliability Engineering and Testing Courses

 More Reliable Software Faster and Cheaper

 Copyright John D. Musa 1996-2006 30

Testing

•  Feature Test
–  All new test cases for new operations
–  Independent of each other (need set up and clean up for each operation)
–  Test cases not replaced in group for possible future re-selection

•  Load Test
–  All valid tests for all releases including acceptance tests and performance tests
–  Full interaction with other test cases in different environments, no setup before test
–  Test cases are replaced in group for possible future re-selection

•  Regression Test
–  All critical test cases + subset of all valid test cases from all releases
–  Independent of each other [for each build during the load test period]
–  Test cases not replaced in group for possible future re-selection

 Copyright Laurie Williams 2014

Step 1: Determine test time

•  System period multiplied by the number of test
units
–  e.g. 8 weeks, 40 hours/week = 320 hours

 Copyright Laurie Williams 2014

JOHN D. MUSA
Software Reliability Engineering and Testing Courses

 More Reliable Software Faster and Cheaper

 Copyright John D. Musa 1996-2006 31

High Level: Planning and Allocating
test time

1.  Allocate among associated system to be tested
(base, variations, supersystem of base product
and variations)

2.  Allocate rest among feature, regression, and load
test for reliability growth

 Copyright Laurie Williams 2014

Step 2: Expected fraction of field
use

• F = expected fraction of field use

•  Note: sum of the Fs of the supersystems related to a base
product or variation must equal the F of that base product or
variation

Table from Musa, J., Software Reliability Engineering, 2004.

 Copyright Laurie Williams 2014

JOHN D. MUSA
Software Reliability Engineering and Testing Courses

 More Reliable Software Faster and Cheaper

 Copyright John D. Musa 1996-2006 32

Step 3: Assign Difference

• D=difference between base product and variations (so base product = 1)

•  If variations result from functional differences, D=S where S is the sum of the
occurrence probabilities of new operations that are functionally different from those of the
base product or previously-considered variations.

• If differences occur from implementation differences, estimate the fraction of lines of
developed code that is not in the base product.

Table from Musa, J., Software Reliability Engineering, 2004.

 Copyright Laurie Williams 2014

Step 4: Estimate relative reliability
risk

•  R=relative reliability risk increase prior to test caused by
independent systems of subsystem (base = 1) based upon
how much we know about them when the current release of
the base product or variations was designed.

Table from Musa, J., Software Reliability Engineering, 2004.

 Copyright Laurie Williams 2014

JOHN D. MUSA
Software Reliability Engineering and Testing Courses

 More Reliable Software Faster and Cheaper

 Copyright John D. Musa 1996-2006 33

Step 5: Determine Allocation
Number

• N = F x D x R

Table from Musa, J., Software Reliability Engineering, 2004.

 Copyright Laurie Williams 2014

Step 6: Compute test time allocation
fraction

• Add N�s, normalize, and allocate test time
proportionally

Table from Musa, J., Software Reliability Engineering, 2004.

 Copyright Laurie Williams 2014

JOHN D. MUSA
Software Reliability Engineering and Testing Courses

 More Reliable Software Faster and Cheaper

 Copyright John D. Musa 1996-2006 34

Step 7: Calculate test time

• Test time = A * available test time (from Step 1)

Table from Musa, J., Software Reliability Engineering, 2004.

 Copyright Laurie Williams 2014

Step 8: Allocate test time

•  For each system
–  Execute to completion all new tests for the new releas
–  Allocate regression test time

•  Expected number of builds for the new release multiplied by the average
time required to execute the test cases

–  Remaining time to load test
•  Usually at least several times the length of feature test + regression test

(combined)

•  If remaining time is too low or negative, negotiate immediately

 Copyright Laurie Williams 2014

JOHN D. MUSA
Software Reliability Engineering and Testing Courses

 More Reliable Software Faster and Cheaper

 Copyright John D. Musa 1996-2006 35

Invoke Test Reprisal

•  Feature
–  Select randomly from set of new test cases for release
–  Run one to completion before running the next
–  Provide setup and cleanup
–  Do not replace test case after execution

•  Load
–  Choose from set of all valid test cases according to test operational

profile
–  Replace test case after execution

•  Regression
–  Choose subset, including all critical test cases and specified number

of randomly-chosen non-critical test cases
–  Do not replace test case after execution
– 

 Copyright Laurie Williams 2014

SREH9H

70

Identify System Failures

 1. Analyze test output promptly for deviations
   deviation: departure of system behavior in

execution from expected behavior
 2. Determine which deviations are failures
 3. Establish when failures occurred, using

common reliability unit chosen for failure
intensities, with units accumulated in sequence
they occur

Execute Test - Identify System Failures

 Copyright Laurie Williams 2014

JOHN D. MUSA
Software Reliability Engineering and Testing Courses

 More Reliable Software Faster and Cheaper

 Copyright John D. Musa 1996-2006 36

SREH9H

71

Activities of SRE Process and Relation
 to Software Development Process

Guide Test

Design and
Implementation

Requirements
and Architecture Test

5. Execute Test 4. Prepare for Test

6. Guide Test

1. Define the Product

2. Implement Operational
 Profiles

3. Engineer �Just Right�
Reliability

 Copyright Laurie Williams 2014

Estimating failure intensity

•  Make periodic estimates of FI/FIO based on failure
data using a software reliability estimation
program, such as CASRE.

•  Software reliability estimation programs are based
on software reliability estimation models (such as
the Musa-Basic model) and statistical inference.

•  Guideline:
–  Estimate weekly if more than 3 months until release
–  Estimate semi-weekly if 1-3 months until release
–  Estimate daily if less than one month until release

JOHN D. MUSA
Software Reliability Engineering and Testing Courses

 More Reliable Software Faster and Cheaper

 Copyright John D. Musa 1996-2006 37

Sharp drop is typical when you drive test with the
operational profile – invoke most frequently-used operations
first and remove these faults efficiently.

Dotted line more typical of system test when all operations
are tested with equal probability.

Figure from Musa, J., Software Reliability Engineering, 2004.

Interpret Plot : Illustration - FF

0

2

4

6

8

10

12

14

16

18

0 0.1 0.2 0.3 0.4 0.5

FI/FIO

Normalized units

When FIO not reached
on schedule, practical
solutions are:
1. Defer features
2. Rebalance major
 quality characteristics
3. Increase work hours

Scheduled
test

completion

© 2011 Laurie Williams

JOHN D. MUSA
Software Reliability Engineering and Testing Courses

 More Reliable Software Faster and Cheaper

 Copyright John D. Musa 1996-2006 38

Interpret Plot : Illustration - FF

0

2

4

6

8

10

12

14

16

18

0 0.1 0.2 0.3 0.4 0.5

FI/FIO

Normalized units

Investigate
significant

upward
trends

Possible causes:
 1. Poor change control
 2. Poor control of test
 execution, resulting
 in test selection
 probabilities varying
 in time

© 2011 Laurie Williams

Interpret Plot : Illustration - FF

0

2

4

6

8

10

12

14

16

18

0 0.1 0.2 0.3 0.4 0.5

FI/FIO Terminate test at FI/FIO = 0.5
 (allows for estimation error)

Normalized units

© 2011 Laurie Williams

JOHN D. MUSA
Software Reliability Engineering and Testing Courses

 More Reliable Software Faster and Cheaper

 Copyright John D. Musa 1996-2006 39

Selecting software reliability
estimation model

•  Model simplicity
–  Should be understandable by software engineer without

extensive mathematical background
•  Model maturity

–  Well developed model that has been applied broadly with
real data and given reasonable results

•  Based on execution time
–  Evidence in support of execution time models rather than

calendar (ordinary) time models
–  Best characterizes the failure-inducing stress placed on

software

Point Estimates and Confidence
Bounds

•  Models compute point estimates for
reliability, or the �most likely� or �best
value.�

•  Most also compute confidence bounds
around the point estimate to see how much
one can rely upon the point estimate
–  Probable error (variance) for the model

parameters and collected data
•  �With 90% confidence, we expect to get

between 17 and 25 failures.�

JOHN D. MUSA
Software Reliability Engineering and Testing Courses

 More Reliable Software Faster and Cheaper

 Copyright John D. Musa 1996-2006 40

Simplest model: Nelson Model

•  Point estimate
–  (point estimate) R = lim (n" ∞) 1-(nf/n)
–  n is the number of runs and nf is the number of failures

in n runs
•  Confidence bounds

–  Assume: normal distribution, n>30

–  p=the proportion of successes in a random sample of n runs,
–  q = 1-p
–  Zα/2 is the value of the standard normal curve leaving an area of
α/2 to the right. For α=0.95, z0.025 = 1.96.

Musa models

•  Musa Basic
–  Assumes finite failures in infinite time
–  Tends to be optimistic (low) in estimating FI/FIO
–  Use if: product is stable (not changing or evolving as test

proceeds), has a very low FIO, and a long test period [so you
can expect that all but a very small number of failures can be
removed by the end of system test]

•  Musa-Okumoto logarithmic
–  Assumes infinite failures
–  Tends to be pessimistic (high) in estimating FI/FIO
–  Use if: characteristics not as specified above

JOHN D. MUSA
Software Reliability Engineering and Testing Courses

 More Reliable Software Faster and Cheaper

 Copyright John D. Musa 1996-2006 41

Figure from Vouk, M. Software Reliability Engineering, 2000 Annual Reliability and Maintainability
Symposium

When to release the product

1.  Terminated test satisfactorily for the base product
with the failure intensity to failure intensity
objective (FI/FIO) ratio at 0.5 or less

2.  Terminated test satisfactorily for all the product
variations, with their FI/FIO ratios not appreciably
exceeding 0.5

3.  Accepted the product and its variations in any
acceptance test rehearsals planned for them.

4.  Accepted all supersystems.
5.  Resolved all outstanding (usually Sev 1 and 2)

failures.

JOHN D. MUSA
Software Reliability Engineering and Testing Courses

 More Reliable Software Faster and Cheaper

 Copyright John D. Musa 1996-2006 42

During Post Delivery and
Maintenance

•  Determine the actual reliability achieved
•  Determine the actual operational profile

experienced
–  Affects the engineering of �just right� reliability for the

next release.
–  Build recording and reporting mechanisms into the

product.
•  Collect data on failure intensity and customer

satisfaction.

SREH9H

84

SRE and You

1. SRE gives you a powerful way to engineer
software-based products so you can be
confident in the availability and reliability of the
product you deliver as you deliver it in
minimum time with maximum efficiency.

2. With SRE you control the process; it doesn�t
control you.

3.  Discussion:
–  How much of all of this can be fit into your

current (and more modern) software
development methodologies?

–  Brainstorm how you can fit it in. We will
share.

 Copyright Laurie Williams 2014

JOHN D. MUSA
Software Reliability Engineering and Testing Courses

 More Reliable Software Faster and Cheaper

 Copyright John D. Musa 1996-2006 43

SREH9H

85

To Explore Further

1. More Reliable Software Faster and Cheaper, classroom
or distance learning course: http://members.aol.com/
JohnDMusa/

2.  SRE website: The essential guide to software reliability:
 http://members.aol.com/JohnDMusa/
 A. SRE Orientation (overviews of different lengths)
B. Courses (classroom and distance learning)
C. Consulting information
D. Practitioners� Corner (extensive user experiences

with SRE and important application examples,
advice on deploying SRE, comprehensive
standards information)

Conclusion & Deploy SRE - Explore

 Copyright Laurie Williams 2014

SREH9H

86

To Explore Further

Conclusion & Deploy SRE - Explore

E. Resources for Everyone (download free failure
intensity estimation program CASRE, join free
SRE professional organization, access SRE
Network, view conference information, learn
from Question of the Month, use glossary)

F. Researchers� Corner (access to failure interval
data and enormous debugging history archive,
access to comprehensive lists of open source
projects likely to have free access to all kinds of
data)

G. Professors� Corner (how to teach SRE, slides
and material for SRE courses, network to other
professors teaching SRE)

 Copyright Laurie Williams 2014

JOHN D. MUSA
Software Reliability Engineering and Testing Courses

 More Reliable Software Faster and Cheaper

 Copyright John D. Musa 1996-2006 44

SREH9H

87

To Explore Further

Conclusion & Deploy SRE - Explore

3. Musa, J. D., Software Reliability Engineering: More
Reliable Software Faster and Cheaper – Second
Edition. Detailed, extensive treatment of practice.
Browse & order at SRE Website [2].

4.  Musa, Iannino, Okumoto; Software Reliability:
Measurement, Prediction, Application, ISBN
0-07-044093-X, McGraw-Hill, 1987. Extensive
theoretical background.

5.  Musa, J.D., More Reliable Software Faster and
Cheaper. Overview of SRE for managers and anyone
wanting a fast, broad understanding of the topic.
Download from SRE Website [2]. (Click on �Overview�)

 Copyright Laurie Williams 2014

SREH9H

88

To Explore Further

6. Lyu, M. (Editor), Handbook of Software
Reliability Engineering , ISBN 0-07-039400-8,
McGraw-Hill, 1996.

7. SRE professional organization: IEEE Computer
Society Technical Committee on Software
Reliability Engineering. Publishes newsletter,
sponsors ISSRE annual international
conference. Join through SRE Website [2].

8. SRE Network: Communicate by email with
hundreds of people interested in field. See SRE
Website [2].

Conclusion & Deploy SRE - Explore

 Copyright Laurie Williams 2014

