
SE 350 Software Process & Product Quality

Activity Metrics

SE 350 Software Process & Product Quality

Activity Metrics Overview
 Metrics that indicate how well we are performing various activities:

 Requirements, Design, Coding, Testing, Maintenance, Configuration
Management, Quality Engineering, etc.

 Most of these are relatively crude indicators:

 Outlier values indicate possible problems

 Good values are not conclusive indicators of goodness

 Most do not measure actual quality of output

 Process quality does not necessarily imply product quality

 Just provide detection of some kinds of problems

 Sort of like MS-Word’s green lines to indicate grammar problems

 Many metrics can be generated by tools and don’t require additional effort or
process changes

 Cheap ways to get some additional useful feedback

 But don’t ignore the cost of analyzing and reacting

SE 350 Software Process & Product Quality

Requirements

 Requirements volatility:

 Average # of changes per requirement

 Requirements changes grouped by source

 Requirements density:

 Number of requirements per function point or KLOC

 Indicator of granularity of requirements capture

 Number of variations per use case:

 Indicator of coverage of exception situations

 Requirements defects classification

SE 350 Software Process & Product Quality

Requirements Failure

How the

customer

explained it

How the

requirements

person

designed it

How the

programmer

wrote it

How it

performed

Under load

What the

customer

really

needed

http://projectcartoon.com

Used per Creative Commons License

http://projectcartoon.com/

SE 350 Software Process & Product Quality

Requirements Defects Classification
 Can classify requirements defects:

 Requirements discovery: missed requirements, misunderstood
requirements

 Indicators of elicitation effectiveness

 Requirements errors: consistency, completeness, ambiguity, etc.

 Effectiveness of requirements analysis & specification

 Requirements updates and enhancements identified in design activities:

 Effectiveness of architecture & component design practices

 Effectiveness of requirements specification

 Such as cases not considered

 Customer-originated updates:

 Can’t control opportunities for improving elicitation

 Can do this classification and removal for any of the activities

 Same concept as DRE

SE 350 Software Process & Product Quality

Design Metrics

 Cohesion

 Coupling

 Fan-in / fan-out:

 Number of methods called by/calling each method

 Keep within control limits

 Low fan-out indicates too much hierarchy

 High fan-out indicates too many dependencies

 Not absolute rules at all!

 Complexity

SE 350 Software Process & Product Quality

Object-Oriented Design Metrics

 Average method size: less is good

 Number of methods per class: within control limits

 Number of instance variables per class: within limits

 Class hierarchy nesting level: < 7 (guideline)

 Number of subsystem/subsystem relationships

 Less is good? Control limits?

 Number of class/class relationships within subsystem

 High (relative to subsystem relationships) is good – indicates

higher cohesion

 Instance variable grouping among methods

 May indicate possibility of splits

SE 350 Software Process & Product Quality

Code Complexity Metrics
 Comment density

 Does not tell you quality of comments!

 Are comments code smells?

 Cyclomatic complexity:

 Number of branches/decisions

 Number of operators / line or procedure

 Useful to estimate complexity of software and expected error rates

 Most applicable to method and data structure complexity

 Software science:

 A set of equations that try to derive parametric relationships among
different software parameters, and create estimates of “difficulty,”
expected effort, faults, etc.

 Not really proven empirically, and of unclear value?

SE 350 Software Process & Product Quality

Historical Perspective

 Much of the early work in metrics was on code complexity and design
complexity

 Of rather limited value, since it quickly gets prescriptive about coding
practices, and its outputs are indicators at best

 Runs easily into various religious arguments

 Even now, this is what some people think of when you mention metrics

 Metrics has now moved on to measuring:

 Customer view of product

 Aspects that give you clearer insight into improving development

 Many practitioners have not caught up with this yet

SE 350 Software Process & Product Quality

Even So ...

 What “metrics” are implied by the “code smells” that

drive refactoring patterns?

 What “metrics” are implied by the need to apply

design patterns and architecture styles?

 Since reuse is so important, how do you evaluate the

“design quality” of a design and code base you are

considering adapting to your use?

SE 350 Software Process & Product Quality

Test Metrics: Coverage
 Black box:

 Requirements coverage: test cases per requirement

 Works with use cases / user stories / numbered requirement

 Equivalence class coverage

 Extent of coverage of equivalence classes of input parameters

 Combinations of equivalence class coverage

 This is the real challenge

 Glass box:

 Function coverage

 Statement coverage

 Path coverage

 There are tools that automatically generate coverage statistics

 And even create test cases and scripts!

SE 350 Software Process & Product Quality

Test Progress
 S-curve

 Histogram of number of test cases attempted / successful per week of
project

 Test defects arrival rate

 Similar to reliability growth curves

 Test defect backlog curve:

 Cumulative defects not yet fixed

 Shows productivity of resolving defects

 Distinct from defect removal productivity

 Throughput vs. delay

 Number of severe defects (crashes, freezes, wrong output, etc.) over time

 Similar to reliability curve, but not as formal

SE 350 Software Process & Product Quality

Maintenance Metrics

 Fix backlog:

 Age of open and closed problems

 Backlog management index: closed rate / arrivals rate

 Fix response time: mean time from open to closed

 Fixing effectiveness: (1 - % of bad fixes)

 Fixing delinquency: % closed within acceptable response time

SE 350 Software Process & Product Quality

Configuration Management
 Defect classification can provide insight into sources of CM problems

 Also, “Configuration Status Accounting” (CSA):

 Tool-based cross-check of expected progress

 As project moves through different phases or increments, would expect
different documents to be generated / modified

 CSA reports which files are being modified

 Powerful, advanced technique

 If pre-configured which expected modifications, can flag
discrepancies

 Can go deeper and look at extent of modifications

 Also useful to monitor which files are modified during defect fixes,
hence which regression tests need to run

SE 350 Software Process & Product Quality

Quality Engineering

 Assessment results

 Red/yellow/green on practices in each area

 For example, requirements, planning, CM etc.

 Classifying defects: Defects related to “not following process”

 Shape of various curves

 For example, wide variations in estimation accuracy or defect

injection rates might show non-uniform practices

SE 350 Software Process & Product Quality

In-Process Metrics

 Metrics can help us determine whether projects went well and where problems

are

 Some metrics are most meaningful after the project is done, such as

productivity or cycletime

 Other metrics can be used to diagnose problems while the project is in

progress, or to ensure that activities are done right:

 Most activity metrics are used as in-process metrics

 Defect density, even DRE defect removal patterns can be used as in-

process metrics, but need to be careful

 Many metrics are not fully available until the end of project, but can

monitor how the metric evolves as project proceeds

 Most in-process metrics are like dashboard gauges: out-of-range values

indicate problems, but “good” values do not guarantee health

SE 350 Software Process & Product Quality

Summary

 Activity metrics help us to gauge the quality of activity

execution:

 Most are useful as indicators, but crude and

inconclusive

 Cheap to generate, so good benefit/cost

 Don’t “work to the metrics”!

 People are constantly coming up with new ones

