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Activity Metrics Overview 
 Metrics that indicate how well we are performing various activities: 

 Requirements, Design, Coding, Testing, Maintenance, Configuration 
Management, Quality Engineering, etc. 

 

 Most of these are relatively crude indicators: 

 Outlier values indicate possible problems 

 Good values are not conclusive indicators of goodness 

 Most do not measure actual quality of output 

 Process quality does not necessarily imply product quality 

 Just provide detection of some kinds of problems 

 Sort of like MS-Word’s green lines to indicate grammar problems 
 

 Many metrics can be generated by tools and don’t require additional effort or 
process changes 

 Cheap ways to get some additional useful feedback 

 But don’t ignore the cost of analyzing and reacting 
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Requirements 

 Requirements volatility: 

 Average # of changes per requirement 

 Requirements changes grouped by source 

 

 Requirements density: 

 Number of requirements per function point or KLOC 

 Indicator of granularity of requirements capture 

 

 Number of variations per use case: 

 Indicator of coverage of exception situations 

 

 Requirements defects classification 
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Requirements Defects Classification 
 Can classify requirements defects: 

 Requirements discovery: missed requirements, misunderstood 
requirements 

 Indicators of elicitation effectiveness 

 Requirements errors: consistency, completeness, ambiguity, etc. 

 Effectiveness of requirements analysis & specification 

 Requirements updates and enhancements identified in design activities: 

 Effectiveness of architecture & component design practices 

 Effectiveness of requirements specification 

 Such as cases not considered 

 Customer-originated updates: 

 Can’t control   opportunities for improving elicitation 

 Can do this classification and removal for any of the activities 

 Same concept as DRE 
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Design Metrics 

 Cohesion 
 

 Coupling 
 

 Fan-in / fan-out: 

 Number of methods called by/calling each method 

 Keep within control limits 

 Low fan-out indicates too much hierarchy 

 High fan-out indicates too many dependencies 

 Not absolute rules at all! 
 

 Complexity 
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Object-Oriented Design Metrics 

 Average method size: less is good 

 Number of methods per class: within control limits 

 Number of instance variables per class: within limits 

 Class hierarchy nesting level: < 7 (guideline) 

 Number of subsystem/subsystem relationships 

 Less is good?   Control limits? 

 Number of class/class relationships within subsystem 

 High (relative to subsystem relationships) is good – indicates 

higher cohesion 

 Instance variable grouping among methods 

 May indicate possibility of splits 
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Code Complexity Metrics 
 Comment density 

 Does not tell you quality of comments! 

 Are comments code smells? 
 

 Cyclomatic complexity: 

 Number of branches/decisions 

 Number of operators / line or procedure 

 Useful to estimate complexity of software and expected error rates 

 Most applicable to method and data structure complexity 
 

 Software science: 

 A set of equations that try to derive parametric relationships among 
different software parameters, and create estimates of “difficulty,” 
expected effort, faults, etc. 

 Not really proven empirically, and of unclear value? 
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Historical Perspective 

 Much of the early work in metrics was on code complexity and design 
complexity 

 Of rather limited value, since it quickly gets prescriptive about coding 
practices, and its outputs are indicators at best 

 Runs easily into various religious arguments 

 

 Even now, this is what some people think of when you mention metrics 

 

 Metrics has now moved on to measuring: 

 Customer view of product 

 Aspects that give you clearer insight into improving development 

 

 Many practitioners have not caught up with this yet 
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Even So ... 

 What “metrics” are implied by the “code smells” that 

drive refactoring patterns? 

 What “metrics” are implied by the need to apply 

design patterns and architecture styles? 

 Since reuse is so important, how do you evaluate the 

“design quality” of a design and code base you are 

considering adapting to your use? 
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Test Metrics: Coverage 
 Black box: 

 Requirements coverage: test cases per requirement 

 Works with use cases / user stories / numbered requirement 

 Equivalence class coverage 

 Extent of coverage of equivalence classes of input parameters 

 Combinations of equivalence class coverage 

 This is the real challenge 
 

 Glass box: 

 Function coverage 

 Statement coverage 

 Path coverage 
 

 There are tools that automatically generate coverage statistics 

 And even create test cases and scripts! 
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Test Progress 
 S-curve 

 Histogram of number of test cases attempted / successful per week of 
project 

 

 Test defects arrival rate 

 Similar to reliability growth curves 

 

 Test defect backlog curve: 

 Cumulative defects not yet fixed 

 Shows productivity of resolving defects 

 Distinct from defect removal productivity 

 Throughput vs. delay 

 

 Number of severe defects (crashes, freezes, wrong output, etc.) over time 

 Similar to reliability curve, but not as formal 
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Maintenance Metrics 

 Fix backlog: 

 Age of open and closed problems 

 Backlog management index: closed rate / arrivals rate 

 Fix response time: mean time from open to closed 

 

 Fixing effectiveness: (1 - % of bad fixes) 

 

 Fixing delinquency: % closed within acceptable response time 
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Configuration Management 
 Defect classification can provide insight into sources of CM problems 

 

 Also, “Configuration Status Accounting” (CSA): 

 Tool-based cross-check of expected progress 

 As project moves through different phases or increments, would expect 
different documents to be generated / modified 

 CSA reports which files are being modified 

 Powerful, advanced technique 

 If pre-configured which expected modifications, can flag 
discrepancies 

 Can go deeper and look at extent of modifications 

 Also useful to monitor which files are modified during defect fixes, 
hence which regression tests need to run 
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Quality Engineering 

 Assessment results 

 Red/yellow/green on practices in each area 

 For example, requirements, planning, CM etc. 

 

 Classifying defects: Defects related to “not following process” 

 

 Shape of various curves 

 For example, wide variations in estimation accuracy or defect 

injection rates might show non-uniform practices 
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In-Process Metrics 

 Metrics can help us determine whether projects went well and where problems 

are 

 Some metrics are most meaningful after the project is done, such as 

productivity or cycletime 

 Other metrics can be used to diagnose problems while the project is in 

progress, or to ensure that activities are done right: 

 Most activity metrics are used as in-process metrics 

 Defect density, even DRE defect removal patterns can be used as in-

process metrics, but need to be careful 

 Many metrics are not fully available until the end of project, but can 

monitor how the metric evolves as project proceeds 

 Most in-process metrics are like dashboard gauges: out-of-range values 

indicate problems, but “good” values do not guarantee health 
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Summary 

 Activity metrics help us to gauge the quality of activity 

execution: 

 Most are useful as indicators, but crude and 

inconclusive 

 Cheap to generate, so good benefit/cost 

 Don’t “work to the metrics”! 

 

 People are constantly coming up with new ones 


