
SE 350 Software Process & Product Quality 1

Defect Prevention and Removal

SE 350 Software Process & Product Quality

Objectives
 Provide basic concepts about defects and defect-oriented practices

 Practices dealing with defects

 Setting defect removal targets:

 Cost effectiveness of defect removal

 Matching to customer & business needs and preferences

 Performing defect prevention, detection, and removal

 Techniques/approaches/practices overview

 Introduce some basic measurements and metrics for tracking

defects and defect practice performance

 Defect measurements and classification

 Measurement source: Inspections, test reports, bug reports

 Defect density

 Phase Containment Effectiveness

 Cost of Quality & Cost of Poor Quality

 Tracking of bug fixing and fixing effectiveness

2

SE 350 Software Process & Product Quality

Terminology of Causality: Anomalies

Human

(developer)

Error

Software

Defect

(bug)

System

Fault

System

Failure

[IEEE Std 1044-1993—IEEE Standard for Classification of Software Anomalies]

“… use of the word anomaly is preferred over the words error, fault, failure,

incident, flaw, problem, gripe, glitch, defect, or bug throughout this standard

because it conveys a more neutral connotation.”

anomaly: Any condition that deviates from expectations based on

requirements specifications, design documents, user documents,

standards, etc., or from someone’s perceptions or experiences.

Anomalies may be found during, but not limited to, the review, test,

analysis, compilation, or use of software products or applicable

documentation.

SE 350 Software Process & Product Quality

Avoid Build-Time Defects and Run-Time Faults

Human

(developer)

Error

Software

Defect

(bug)

System

Fault

System

Failure

Build time Run time

 Software engineering processes attempt to remove human errors

 Software reviews and inspections attempt to remove software defects before

they appear at run-time

 Software testing attempts to cause software defects to manifest themselves as

observable faults (and failures) at run-time

 A fault-tolerant system may stop run-time faults from becoming run-time

failures

 Failure containment attempts to limit the impact of a system failure

SE 350 Software Process & Product Quality

Quality Views

 People expect the software they use and rely on to:

 Do the right things

 Do the things right

 Correctness focus: Correct functionality under all

conditions

 Developer’s perspective: No defects in functionality

 User’s perspective: No failures of functionality

 But there is more to quality that correct functionality

5

SE 350 Software Process & Product Quality

Quality Views and Attributes

SE 350 Software Process & Product Quality

Engineering Practices on Defects

7

SE 350 Software Process & Product Quality 8

Underlying Quality Engineering Model

 Optimizing results using feedback:

Perform activity

Measure results,

feedback for improvement

Objectives Outcomes

In the next few weeks, we take different SE areas – Defect Prevention and

Removal, Product Quality, Customer Satisfaction, Project Management – and

study the quality engineering objectives, practices and metrics for each area.

SE 350 Software Process & Product Quality

Prevent, Detect, and Remove Defects
Prevent Failures

9

Human

(developer)

Error

Software

Defect

(bug)

System

Fault

System

Failure

Use software

engineering

processes, tools,

and methods to

prevent the

injection of defects

into the code base

Use reviews and

testing to detect and

locate injected

defects

(then remove them)

Use fault tolerance

and fault

containment to

prevent run-time

faults from

becoming system

failures

Prevent

Defects

Prevent

Failures

Detect and Remove

Defects

SE 350 Software Process & Product Quality

Defect Removal Objectives

 Low defect density in product

 Different density targets depending on defect severity level

 Actual targets based on nature of software:

 Impact of defects, expectations of customer

 (Will discuss in more detail under reliability)

 Often the idea of “setting a defect rate goal” is not discussable

 What about the goal of “no known defects”?

 Is shipping with known defects acceptable?

 Cost-effective defect removal:

 Quantitative understanding of which approaches most cost-effective

 Quantitative understanding of how much effort is worthwhile

10

Note: “Defect Removal” is often used as shorthand for

defect prevention, detection, and removal

SE 350 Software Process & Product Quality

Defect Removal Practices 1

 Informal defect removal:

 Informal discussion and review of requirements with customer

 Sporadic testing prior to release

 Informal discussions and reviews within team

 Informal defect reporting and fixing

 Informal but strong quality focus:

 Extensive testing

 Creating test cases, writing test code

 Feature-based testing

 Need-based inspections and reviews

 “This code seems to have problems, let us improve it”

11

(Practices grouped by increasing sophistication of approach)

SE 350 Software Process & Product Quality

Defect Removal Practices 2

 Test strategy and test planning:

 Informal attempts at coverage

 Systematic identification of test cases

 Tracking of detected problems to closure for both tests and reviews

 Systematic customer and developer reviews of generated documents

 Tracking of defect/failure reports from customers

 Possibly some use of test automation

 Test harnesses that systematically run the software through a series

of tests

 Practices that prevent some kinds of defects

 Training, configuration management, prototyping

12

SE 350 Software Process & Product Quality

Defect Removal Practices 3

 Formal peer reviews of code and documents

 Tracking of review and test results data

 Use of coverage analysis and test generation tools

 Tracking of data on defect fixing rates

 Use of graphs showing defect rates for informal diagnosis

and improvement

 Improved defect prevention using checklists, templates,

formal processes

13

SE 350 Software Process & Product Quality

Defect Removal Practices 4

 Use of metrics to:

 Analyze effectiveness of defect removal

 Identify problem modules (with high defect densities)

 Identify areas where practices need strengthening

 Identify and address problems “in-process” – during development

 Set defect density / defect rate objectives

 Usually “baselines” – current capability level

 Guide release (only when defect detection rates fall below

threshold)

 Plan test effort and number of test cases

 Optimize quality efforts

 Consistent use of test automation

 Use of formal methods for defect avoidance

14

SE 350 Software Process & Product Quality 15

Defect Removal Practices 5

 Continuous improvement cycle

 Pareto analysis to discover common sources of problems

 Causal analysis to identify roots of frequent problems

 Use defect elimination tools to prevent these problems

 Repeat!

SE 350 Software Process & Product Quality 16

Value of Early Defect Detection

Note that y-axis scale is logarithmic – actual increase is exponential
From http://www.sdtcorp.com/overview/inspections/sld016.htm

SE 350 Software Process & Product Quality

Defect Injection and Propagation

Defect-free Architectural Design Architectural Design based on
Defective Requirements

Defective Architectural
Design

Defect-free Software Requirements Defective Software Requirements

User needs

Defect-free Detailed
Design

D. D. based on
Defective Reqs

Detailed Design based
On Defective Arch. D

Defective Detailed
Design

Requirements Definition and Analysis

Architectural Design

Detailed Design

Defect-
Free
Code

Defective
Code

Code based on
Defective DD

Code based on
Defective Arch. D

Code based on
defective Reqs

Coding

SE 350 Software Process & Product Quality

How to Detect Defects Early?

 Inspections and reviews

 Prototyping, extensive customer interaction

 Note that agile development emphasizes these

 Use of analysis techniques:

 Requirements analysis for completeness and consistency

 Design analysis, such as sequence diagrams to analyze functional

correctness, quality attribute analysis

 Formal specification and analysis of requirements

 Methodologies that increase early lifecycle effort & depth:

 O-O development increases design effort & detail

 Test-driven development increases understanding of relationships

between design and requirements

 Traceability analysis

 Incremental development to expose defects in early operation

18

SE 350 Software Process & Product Quality 19

Need for Multi-Stage Approaches

 (Just an illustrative example)

 One phase of defect removal, such as testing:

 Assume 95% efficiency (called PCE: phase containment effectiveness)

 Input 1000 defects – output 50 defects

 Six phases of defect removal, such as Requirements, Design, Implementation, Unit

Test, Integration Test, System Test

 Assume 100, 300, 600 bugs introduced in Requirements, Design,

Implementation, respectively

 Even with much less efficiency, we get better results

 10% improvement in PCE produces 3x better results

 Similar concept for incremental development: Increment containment effectiveness

Phase Req Des Impl UT IT ST

60% eff: defects at entry 100 340 736 295 118 47

60% eff: defects at exit 40 136 295 118 47 19

70% eff: defects at entry 100 330 699 210 63 19

70% eff: defects at exit 30 99 210 63 19 6

SE 350 Software Process & Product Quality

Defect Data

20

SE 350 Software Process & Product Quality

Sources of Defect Data

 Inspection / review reports contain

 Module

 Defect type (see next slide on defect classification).

 Defect severity

 Phase of detection

 Effort data: review prep, review meeting, effort to fix problems

 Number of lines of code reviewed

 Similar data gathered from testing

 User defect/failure reports

 Manual screening to reject duplicates, non-problems

 Similar classification and effort data

21

SE 350 Software Process & Product Quality

Defect Classification

 Many organizations have their own defect classification system:

 For example, defect type: Logic, requirements, design, testing,

configuration mgmt

 May classify in more detail: initialization, loop bounds, module

interface, missed functionality, etc.

 Helps in Pareto analysis for continuous improvement

 More effort, less reliable: errors in classification, subjectivity

 Did defect originate from previous fix?

 There exists a methodology called “Orthogonal Defect Classification”

(ODC)

 For more details, see IEEE Standard for Classification of Software

Anomalies (IEEE Std 1044-1993)

22

SE 350 Software Process & Product Quality

Processing of Defect Data

 Compute phase containment effectiveness based on:

 Number of defects found in that phase

 Number of defects from that phase or earlier found subsequently

 Similarly, compute test effectiveness

 Fixing effectiveness

 Did the fix actually remove the defect?

 Did the fix inject new defects?

 Overall defect density

 Density per module, phase, increment

 Review rates: number of lines / hour

 Cost of quality: Total effort spent on quality activities

 Cost of poor quality: Total effort spent on fixes

23

SE 350 Software Process & Product Quality

Limitations in Defect Data

 Small sample sizes:

 Smaller projects often have < 100 defects

 Classifying by type, phase etc. further reduces the “population”

from statistical perspective

 PCE in particular has sample size problems

 Organizational numbers often more meaningful

 PCE reduces as more bugs found!

 Hard to use as in-process metric

 Subjectivity of classification

 Developers may suppress defect data to look good

 Fundamental rule: “Never use metrics to evaluate people!”

24

SE 350 Software Process & Product Quality

Conclusion

 Provided some basic concepts and practices

 Anomalies: Error Defect Fault Failure

 Prevent defects and failures

 Detect and remove defects

 Early defect detection and increment/phase containment

effectiveness

 Numerous ways to classify and analyze defect data

25

