
SE 350 Software Process & Product Quality 1

Defect Removal Metrics

SE 350 Software Process & Product Quality

Objectives

 Understand some basic defect metrics and the concepts behind

them

 Defect density metrics

 Defect detection and removal effectiveness

 etc.

 Look at the uses and limitations of quality metrics

 Build some intuition to help balance investment in quality

against the cost of poor quality

 Cost of Quality Cost of Poor Quality

2

SE 350 Software Process & Product Quality

Defect Removal Metrics: Concepts

 All defect removal metrics are computed from the

measurements identified last time:

 Inspection reports, test reports, field defect reports

 Used to get different views on what’s going on

 Each metric can be used to tell us something about the

development process or results

 Many are amazingly useful, though all have limitations

 Need to learn how to use each metric and tool effectively

 For most defect metrics, filter out minor and cosmetic defects

 Can easily make many metrics look good by finding more or

fewer cosmetic problems (level of nitpicking)

3

SE 350 Software Process & Product Quality

Measuring “Total Number of Defects”

 Many metrics have parameters such as “total number of defects”

 For example: Total number of requirements defects

 Clearly, we only ever know about the defects that are found

 So we never know the “true” value of many of these metrics

 Further, as we find more defects, this number will increase:

 Hopefully, finding defects is asymptotic over time

 We find fewer defects as time goes along, especially

after release

 So metrics that require “total defects” information will

change over time, but hopefully converge eventually

 The later in the lifecycle we compute the metric, the more

meaningful the results, but also the less useful for the current

project

 If and when we use these metrics, we must be aware of this lag

effect and account for it

4

SE 350 Software Process & Product Quality

Measuring Size

 Many defect metrics have “size” parameters:

 The most common size metric is KLOC (thousands of lines of code)

 Depends heavily on language, coding style, competence

 Code generators may produce lots of code, distort measures

 Are included libraries counted?

 Does not take “complexity” of application into account

 Easy to compute automatically and “reliably” (but can be

manipulated)

 An alternative size metric is “function points” (FP’s)

 A partly-subjective measure of functionality delivered

 Directly measures functionality of application: number of inputs

and outputs, files manipulated, interfaces provided, etc.

 More valid but less reliable, more effort to gather

 We use KLOC in our examples, but works just as well with FP’s

 Be careful with using “feature count” in agile processes

5

SE 350 Software Process & Product Quality

Defect Density

 Most common metric: Number of defects / size

 Defect density in released code (“defect density at release”)

is a good measure of organizational capability

 Defects found after release / size of released software

 Can compute defect densities per phase, per increment, per

component, etc.

 Useful to identify “problem” components that could use

rework or deeper review

 Heuristic: Defects tend to cluster

 Note that problem components will typically be high-

complexity code at the heart of systems

 Focus early increments on complex functionality to

expose defects and issues early

6

SE 350 Software Process & Product Quality

Using Defect Density

 Defect densities (and most other metrics) vary a lot by domain

 Can only compare across similar projects

 Very useful as measure of organizational capability to produce

defect-free outputs

 Can be compared with other organizations in the same

application domain

 Outlier information useful to spot problem projects and problem

components

 Can be used in-process, if comparison is with defect densities of

other projects in same phase or increment

 If much lower, may indicate defects not being found

 If much higher, may indicate poor quality of work

 (Need to go behind the numbers to find out what is really

happening – Metrics can only provide triggers)

7

SE 350 Software Process & Product Quality

Defect Density: Limitations

 Size estimation has problems of reliability and validity

 “Total Defects” problem: Can only count the defects you detect

 Criticality and criticality assignment

 Combining defects of different criticalities reduces validity

 Criticality assignment is itself subjective

 Defects may not equal reliability

 Users experience failures, not defects

 Statistical significance when applied to phases, increments, and

components

 Actual number of defects may be so small that random

variation can mask significant variation

8

SE 350 Software Process & Product Quality

Defect Removal Effectiveness

 Percentage of defects removed during a phase or increment

 (Total Defects found) / (Defects found during that phase +

Defects not found)

 Approximated by:

 (Defects found) / (Defects found during that phase +

Defects found later)

 Includes defects carried over from previous phases or increments

 Good measure of effectiveness of defect removal practices

 Test effectiveness, inspection effectiveness

 Correlates strongly with output quality

 Other terms: Defect removal efficiency, error detection

efficiency, fault containment, etc.

9

(Can only

count the

defects you

detect)

SE 350 Software Process & Product Quality

Req Des Code UT IT ST Field Total

Found

Cum.

Found

Req 5 5 5

Des 2 14 16 21

Code 3 9 49 61 82

UT 0 2 22 8 32 114

IT 0 3 5 0 5 13 127

ST 1 3 16 0 0 1 21 148

Field 4 7 6 0 0 0 1 18 166

Total

Injected

15 38 98 8 5 1 1 166

Cum.

Injected

15 53 151 159 164 165 166

10

DRE Table Example
Phase of Origin

P
h
as

e
F

o
u
n
d

(Illustrative example, not real data) Phase of Origin

P
h
as

e
F

o
u
n
d

SE 350 Software Process & Product Quality

I-1 I-2 I-3 I-4 I-5 I-6 Field Total

Found

Cum.

Found

I-1 5 5 5

I-2 2 14 16 21

I-3 3 9 49 61 82

I-4 0 2 22 8 32 114

I-5 0 3 5 0 5 13 127

I-6 1 3 16 0 0 1 21 148

Field 4 7 6 0 0 0 1 18 166

Total

Injected

15 38 98 8 5 1 1 166

Cum.

Injected

15 53 151 159 164 165 166

11

DRE Table Example: Increments
Increment of Origin

In
cr

em
en

t
F

o
u
n
d

(Illustrative example, not real data) Increment of Origin

In
cr

em
en

t
F

o
u
n
d

SE 350 Software Process & Product Quality

Req Des Code UT IT ST Field Total

Found

Cum.

Found

Req 5 5 5

Des 2 14 16 21

Code 3 9 49 61 82

UT 0 2 22 8 32 114

IT 0 3 5 0 5 13 127

ST 1 3 16 0 0 1 21 148

Field 4 7 6 0 0 0 1 18 166

Total

Injected

15 38 98 8 5 1 1 166

Cum.

Injected

15 53 151 159 164 165 166

12

Requirements Phase DRE Example

P
h
as

e
F

o
u
n
d

(Illustrative example, not real data) Phase of Origin

• In the requirements phase, 5 requirements defects were found and removed

• But additional requirements defects were found in later phases. The total number of found

requirements defects at the end of all phases (plus field operations) is 15

• 15 total requirements defects injected

• DRE in requirements phase is 5/15 (# found / # available to find)

Total requirements

defects injected = 15

Total defects found in

requirements phase = 5

SE 350 Software Process & Product Quality

Req Des Code UT IT ST Field Total

Found

Cum.

Found

Req 5 5 5

Des 2 14 16 21

Code 3 9 49 61 82

UT 0 2 22 8 32 114

IT 0 3 5 0 5 13 127

ST 1 3 16 0 0 1 21 148

Field 4 7 6 0 0 0 1 18 166

Total

Injected

15 38 98 8 5 1 1 166

Cum.

Injected

15 53 151 159 164 165 166

13

Design Phase DRE Example
P

h
as

e
F

o
u
n
d

Phase of Origin

• To compute removal effectiveness in

the design phase, we need to count

how many defects (requirements and

design) were still in the system (we do

not count those already found and

removed in the requirements phase)

• There were 15 requirements

defects total injected, but 5 had

already been found and removed

in the requirements phase 10

requirements defects available to

find

• There were 38 total design

defects injected, and 14 of those

38 were found

• So, in design phase

• (2+14) defects found

• (10 + 38) defects

available to find

• Design phase DRE =

(2+14)/(10+38) = 16/48

Total design defects

injected = 38

Total defects found in

design phase = 16

• In the design phase, 14 design defects were found and

removed, plus 2 requirements defects were found and

removed.

• Total defects found and removed: (14+2) = 16

• Additional design defects were found in later phases: 38

total design defects injected

Total defects available to find = 48

(Cum. injected – Cum. Found in prior phases)

Total defects removed prior

to design phase = 5

SE 350 Software Process & Product Quality 14

Coding Phase DRE Example
Coding phase DRE = 61/130

Req Des Code UT IT ST Field Total

Found

Cum.

Found

Req 5 5 5

Des 2 14 16 21

Code 3 9 49 61 82

UT 0 2 22 8 32 114

IT 0 3 5 0 5 13 127

ST 1 3 16 0 0 1 21 148

Field 4 7 6 0 0 0 1 18 166

Total

Injected

15 38 98 8 5 1 1 166

Cum.

Injected

15 53 151 159 164 165 166

P
h
as

e
F

o
u
n
d

(Illustrative example, not real data)

Phase of Origin

Total coding defects

injected = 98

Total defects found in

coding phase = 61

Total defects available to find = 130

Total defects removed prior

to coding phase = 21

SE 350 Software Process & Product Quality 15

Unit Test Phase DRE Example
Unit Test phase DRE = 32/77

Req Des Code UT IT ST Field Total

Found

Cum.

Found

Req 5 5 5

Des 2 14 16 21

Code 3 9 49 61 82

UT 0 2 22 8 32 114

IT 0 3 5 0 5 13 127

ST 1 3 16 0 0 1 21 148

Field 4 7 6 0 0 0 1 18 166

Total

Injected

15 38 98 8 5 1 1 166

Cum.

Injected

15 53 151 159 164 165 166

P
h
as

e
F

o
u
n
d

(Illustrative example, not real data)

Phase of Origin

Total defects found in

unit test phase = 32

Total defects available to find = 77

SE 350 Software Process & Product Quality

DRE Value

 Compute effectiveness of tests and reviews:

 Actual defects found / defects present at entry to review/test

 (Phasewise Defect Removal Effectiveness: PDRE)

 For incremental development, Increment Defect Removal

Effectiveness: IDRE

 Compute overall defect removal effectiveness:

 Problems fixed before release / total originated problems

 Analyze cost effectiveness of tests vs. reviews:

 Hours spent per problem found in reviews vs. tests

 Need to factor in effort to fix problem found during review vs.

effort to fix problem found during test

 To be more exact, we must use a defect removal model

 Shows pattern of defect removal

 Where defects originate (“injected”), where they get removed

16

SE 350 Software Process & Product Quality 17

DRE Implications

 Counter-intuitive implication

 If testing reveals lots of bugs, likely that final product will be

very buggy too

 Not true that “we have found and fixed a lot of problems,

now our software is OK”

 We can only make this second assertion if testing reveals

lots of bugs early on, but the latter stages of testing reveal

hardly any bugs

 And even then, only if you are not simply repeating the

same tests!

SE 350 Software Process & Product Quality

DRE Limitations

 Statistical significance:

 Note how small the numbers in each box are

 Hard to draw conclusions from data about one project

 At best a crude indicator of which phases and reviews

worked better

 Organization-wide data has far more validity

 Remember that when the numbers are small, better to show

the raw numbers

 Even if you show DRE percentages, include actual defect

count data in each box

 (DRE = 32/77 preferred to DRE = 42%)

 Full picture only after project completion

 Easily influenced by underreporting of problems found

18

SE 350 Software Process & Product Quality

Other Related Metrics

 Phase Containment Effectiveness:

 % of problems introduced during a phase that were found

within that phase

 For example, Table 1 design PCE = 14/38 = 0.37 (37%)

 PCE of 70% is considered very good

 Phasewise Defect Injection Rate:

 Number of defects introduced during that phase / size

 High injection rates (across multiple projects) indicate need

to improve the way that phase is performed

 Possible solutions: training, stronger processes, tools,

checklists, etc.

 Similar for Increment Defect Injection Rate

19

SE 350 Software Process & Product Quality 20

Defect Removal Model

 Can predict defects remaining, given:

 Historical data for phasewise defect injection rates

 Historical data for rates of defect removal

 Historical data for rates of incorrect fixes

 Actual phasewise defects found

 Can statistically optimize defect removal, given (in addition to rates)

 Phasewise costs of finding defects (through reviews and testing)

 Phasewise costs of fixing defects

 Can decide whether it is worthwhile to reduce fault injection rates, by

providing additional training, adding more processes and checklists, etc.

Defects

injected

during

development

Defect

detection
Defect

fixing

Defects

existing on

phase entry
Incorrect

fixes

Undetected defects

Defects

removed

Defects

remaining after

phase exit

(From Kan

Text)

This is “statistical process

control”. But remember all

the disclaimers on its validity.

SE 350 Software Process & Product Quality

Additional Metrics for Inspections

 Several simple (secondary) metrics can be tracked and managed

within control limits:

 Inspection rates:

 Size / Duration of inspection meeting

 Very high or very low rates may indicate problems

 Inspection effort:

 (Preparation + meeting + tracking) / size

 Inspection preparation time:

 Make sure preparation happens

 Avoid overloading others on team

 Inspection effectiveness is still the bottom line

 These are just helping with optimizing inspections

21

SE 350 Software Process & Product Quality

Cost of Quality (COQ)

 Total effort put into quality-related activities:

 Testing and test development effort

 Inspections and reviews

 Quality assessments and preparation

 COQ is a percentage of project effort

 Pure number, suitable for comparisons across projects and

organizations

 Can observe relationships between COQ and defect removal

efficiency, COQ and release defect density

 Note that defect prevention reverses the normal

relationships: reduces both COQ and release defect density

 Will NOT show up in defect removal effectiveness!

22

SE 350 Software Process & Product Quality

Cost of Poor Quality (COPQ)

 Total effort put into rework:

 Cost of fixing defects

 Cost of revising/updating affected documentation

 Cost of re-testing, re-inspecting

 Cost of patches & patch distribution

 Cost of tracking defects

 Percentage of project effort, a pure number

 Would generally correlate well with defect densities

 If there are fewer defects, less rework needed

 COPQ < 10% is very good

 Note that early defect detection (inspections) and defect

prevention reduce COPQ

 Here, COPQ is cost of rework. Also consider cost of re-

deployment (patches), customer dissatisfaction, etc.

 23

SE 350 Software Process & Product Quality

Quality Sweet Spot

Quantity

Effort on

Quality

Cost of

quality

Number of missed

defects

Optimal Amount

of Quality Effort
High COQ Low COQ

SE 350 Software Process & Product Quality

Optimizing Quality Efforts

 Normally, there is a balance between COQ and COPQ

 To reduce rework, need to spend more effort on quality

upfront

 Note that high COPQ increases COQ, because of re-testing

and other re-work

 Defect prevention and superior quality approaches (better test

methodologies, more effective reviews, etc.) cut both COQ and

COPQ

 Objective is to have a lower COQ while maintaining good (low)

COPQ and low release defect density

 More quality efforts will always improve quality, but there is

a point of diminishing returns

 COPQ, release defect density within targets -> adequate

quality

25

SE 350 Software Process & Product Quality

Limitations of COQ/COPQ
 Assumes the numbers are accurate

 That the numbers fairly reflect all defect removal activities

and all rework activities

 COPQ easily distorted if there is one requirements or design bug

that creates a large amount of rework

 Balancing COQ / COPQ is an organizational-level activity

 Improves statistical significance, averages out variations

 Evens out distortions in COPQ due to a couple of high-

rework bugs

 Need to wait until product has been in the field to get “truer”

COPQ numbers

 Should COPQ include “customer expectation management?”

 It is more expensive to gain a customer than to keep a

customer

26

SE 350 Software Process & Product Quality

Limitations of COQ/COPQ - Cont’d

 Can Use COQ / COPQ at the project level as indicators

 But need to go behind the numbers to interpret better

 Hard for COQ to account properly for unit tests if developers do

it along with coding

 Inspections often have additional hidden effort because

developers will go through their code extra carefully before

submitting it for inspection

27

SE 350 Software Process & Product Quality

Conclusions
 Defect densities tell us a lot about the quality of the product

 Need multiple stages of defect removal:

 Inspections are well-known to be cost-effective

 Early detection of defects saves work

 More expensive to fix bugs late in lifecycle

 DRE and similar charts help us to:

 Compute inspection and test effectiveness

 Predict field defect rates

 See pattern of defect removal

 Defect removal metrics can also help optimize effort spent on

quality activities: COQ vs. COPQ

 Notice how all these fancy metrics come from just the basic

review and test reports!

 Don’t gather too much data; focus on meaningful analysis

28

