
SE 350 Software Process & Product Quality

Measurement and Metrics
Fundamentals

SE 350 Software Process & Product Quality

Lecture Objectives

 Provide some basic concepts of metrics

 Quality attribute metrics and measurements

 Reliability, validity, error

 Correlation and causation

 Discuss process variation and process effectiveness

 Introduce a method for identifying metrics for quality

goals

 Goal-Question-Metric approach

SE 350 Software Process & Product Quality

Context: Define Measures and Metrics
that are Indicators of Quality

Quality attribute

Operational

definition, metrics

Measurements Data collection

Data analysis and

interpretation

Definition:

Identify data

for quality

assessment

and

improvement

Execution:

Measure,

analyze,

and

improve

quality

SE 350 Software Process & Product Quality

Software Quality Metrics

IEEE-STD-1061-1998(R2004) Standard for Software Quality Metrics Methodology

SE 350 Software Process & Product Quality

A Metric Provides Insight on Quality
 A measure is a way to ascertain or appraise value by

comparing it to a norm [2]

 A metric is a quantitative measure of the degree to which a

system, component, or process possesses a given attribute [1]

 Software quality metric: A function whose inputs are

software data and whose output is a single numerical

value that can be interpreted as the degree to which

software possesses a given attribute that affects its quality

[2]

 An indicator is a metric or combination of metrics that

provide insight into a process, a project, or the product itself

[1] IEEE-STD-610.12-1990 Glossary of Software Engineering Terminology

[2] IEEE-STD-1061-1998 Standard for Software Quality Metrics Methodology

SE 350 Software Process & Product Quality

Measurements vs. Metrics
 A measurement just provides information

 Example: “Number of defects found during inspection: 12”

 A metric is often derived from one or more measurements or

metrics, and provides an assessment (an indicator) of some

property of interest:

 It must facilitate comparisons

 It must be meaningful across contexts, that is, it has some

degree of context independence

 Example: “Rate of finding defects during the inspection = 8 /

hour”

 Example: “Defect density of the software inspected = 0.2

defects/KLOC”

 Example:“Inspection effort per defect found = 0.83 hours”

SE 350 Software Process & Product Quality

Operational Definition

Concept

Definition

Operational

Definition

Measurements

 Concept is what we want to measure, for

example, “cycletime”

 We need a definition for this: “elapsed time to

do the task”

 The operational definition spells out the

procedural details of how exactly the

measurement is done

 “Cycletime is the calendar time between the

date when the project initiation document is

approved to the date of full market release

of the product”

SE 350 Software Process & Product Quality

Operational Definition Example

 One operational definition of “development cycletime” is:

 The cycletime clock starts when effort is first put into project

requirements activities (still somewhat vague)

 The cycletime clock ends on the date of release

 If development is suspended due to activities beyond a local

organization’s control, the cycletime clock will be stopped, and

restarted again when development resumes

 This is decided by the project manager

 Separate “development cycle time” from “project cycletime” which

has no clock stoppage and beginning at first customer contact

 The operational definition addresses various issues related to gathering

the data, so that data gathering is more consistent

SE 350 Software Process & Product Quality

Measurement Scales

 Nominal scale: categorization

 Different categories, not better or worse

 Example: Type of risk: business, technical, requirements, etc.

 Ordinal scale: Categories with ordering

 Example: CMM maturity levels, defect severity

 Sometimes averages quoted, but only marginally meaningful

 Interval scale: Numeric, but “relative” scale

 Example: GPAs. Differences more meaningful than ratios

 “2” is not to be interpreted as twice as much as “1”

 Ratio scale: Numeric scale with “absolute” zero

 Ratios are meaningful and can be compared Increasing

information content

and analysis tools

SE 350 Software Process & Product Quality

Using Basic Measures

 See Kan text for good discussion on this material

 Ratios are useful to compare magnitudes

 Proportions (fractions, decimals, percentages) are useful when

discussing parts of a whole

 Such as a pie chart

 When number of cases is small, percentages are often less meaningful

– Actual numbers may carry more information

 Because percentages can shift so dramatically with single instances

(high impact of randomness)

 When using rates, better if denominator is relevant to opportunity of

occurrence of event

 Requirements changes per month, or per project, or per page of

requirements more meaningful than per staff member

SE 350 Software Process & Product Quality

Reliability & Validity

 Reliability is whether measurements are consistent when performed

repeatedly

 Example: Will process maturity assessments produce the “same”

outcomes when performed by different people?

 Example: If we measure repeatedly the reliability of a product, will

we get consistent numbers?

 Validity is the extent to which the measurement actually measures

what we intend to measure

 Construct validity: Match between operational definition and the

objective

 Content validity: Does it cover all aspects? (Do we need more

measurements?)

 Predictive validity: How well does the measurement serve to

predict whether the objective will be met?

SE 350 Software Process & Product Quality

Reliable but not valid Valid but not reliable Valid and reliable

Figure 3.4, pp. 72 of Kan textbook

Reliable: consistent measurements when using the

same measurement method on the same subject

Valid: Whether the metric or measurement really

measures or gives insight on the concept or quality

attribute that you want to understand

SE 350 Software Process & Product Quality

Reliability vs. Validity
 Rigorous operational definitions of how the measurement will be

collected can improve reliability, but worsen validity

 Example: “When does the cycletime clock start?”

 If we allow too much flexibility in data gathering, the results may be

more valid, but less reliable

 Too much dependency on who is gathering the data

 Good measurement systems design often needs a balance between

reliability & validity

 A common error is to focus on what can be gathered reliably

(“observable & measurable”), and lose out on validity

 “We can’t measure this, so I will ignore it”, followed by “The

numbers say this, hence it must be true”

 Example: SAT scores for college admissions decisions

 Measure what is necessary, not what is easy

SE 350 Software Process & Product Quality

Systematic & Random Error

 Gaps in reliability lead to random error

 Variation between “true value” and “measured value”

 Gaps in validity may lead to systematic error

 “Biases” that lead to consistent underestimation or overestimation

 Example: Cycletime clock stops on release date rather than when
customer completes acceptance testing

 From a mathematical perspective:

 We want to minimize the sum of the two error terms, for single
measurements to be meaningful

 Trend information is better if random error is less

 When we use averages of multiple measurements (such as
organizational data), systematic error is more worrisome

 Broader measurement scope Broader impact of error

SE 350 Software Process & Product Quality

Assessing Reliability

 Can relatively easily check if measurements are highly

subject to random variation:

 Split sample into halves and see if results match

 Re-test and see if results match

 We can figure out how reliable our results are, and factor

that into metrics interpretation

 Can also be used numerically to get better statistical

pictures of the data

 Example: Kan text describes how the reliability

measure can be used to correct for attenuation in

correlation coefficients (p. 76-77)

SE 350 Software Process & Product Quality

Correlation

 Checking for relationships between two variables:

 Example: Does defect density increase with product size?

 Plot one against the other and see if there is a pattern

 Statistical techniques to compute correlation coefficients:

 Most of the time, we only look for linear relationships

 Text explains the possibility of non-linear relationships,

and shows how the curves and data might look

 Common major error: Assuming correlation implies causality

(A changes as B changes, hence A causes B)

 Example: Defect density increases as product size

increases Writing more code increases the chance of

coding errors!

SE 350 Software Process & Product Quality

Criteria for Causality
 Observation indicates correlation

 Cause precedes effect in time or logical dependence

 The cause is not spurious

 Not so easy to figure out! (See diagrams in text p. 81)

 Maybe common cause for both

 Example: Code size and defects are a result of problem

complexity

 Maybe there is an intermediate variable

 Size number of dependencies defect rate

 Why is this important? Because it affects quality management

approach

 For example, we may focus on dependency reduction

 Maybe both are indicators of something else:

 Example: developer competence (less competent: more size,

defects)

SE 350 Software Process & Product Quality

Measuring Process Effectiveness

 A major concern in process theory (particularly in

manufacturing) is “reducing process variation”

 If you are doing the same thing, then do it the same way

 Monitor the output to make sure that the process is “in control”

 It is about “improving process effectiveness” so that the

process consistently delivers non-defective results

 Process effectiveness is measured as “sigma level”

SE 350 Software Process & Product Quality

The Normal Curve

Sigma level is the area under the curve between the limits

• Percentage of situations that are “within tolerable limits”

SE 350 Software Process & Product Quality

Six Sigma

 Given “tolerance limits” (the definition of what is

defective), if we want +/- 6 to fit within the limits, the

curve must become very narrow:

 We must “reduce process variation” so that the

outcomes are highly consistent

 Area within +/- 6 is 99.9999998%

 ~2 defects per billion

 This assumes a normal curve. But actual curve is often

a “shifted” curve, for which it is a bit different

 The Motorola (and generally accepted) definition is 3.4

defects per million operations

SE 350 Software Process & Product Quality

Why So Stringent?

 Because manufacturing involves thousands of process steps,

and output quality is dependent on getting every single one of

them right:

 Need very high reliability at each step to get reasonable

probability of end-to-end correctness

 At 6 sigma, product defect rate is ~10% with ~1200 process

steps

 Concept came originally from chip manufacturing

 Software has sort of the same characteristics:

 To function correctly, each line has to be correct

 A common translation is 3.4 defects per million lines of code

SE 350 Software Process & Product Quality

Six Sigma Focus

 Six sigma is NOT actually about “achieving the numbers,”
but about:

 A systematic quality management approach

 Studying processes and identifying opportunities for
defect elimination

 Defect prevention approaches

 Measuring output quality and improving it constantly

SE 350 Software Process & Product Quality

Comments on Process Variation
 Note that “reducing” process variation is a “factory view” of engineering

development

 Need to be careful about applying it to engineering processes

 Each software product may vary, but be consistent in the engineering

processes

 Most applicable for activities performed repeatedly, such as, writing

code, running tests, creating releases, etc.

 Less applicable for activities that are different every time, such as,

innovation, learning a domain, architecting a system

 Many “creative” activities do have a repetitive component

 Partly amenable to “systematic defect elimination” such as in design

 Simple criterion: Are there defects that can be eliminated by systematic

process improvement?

 Reducing variation eliminates some kinds of defects

 Defect elimination is a two-outcome model—ignores excellence

SE 350 Software Process & Product Quality

GQM Approach for Defining and
Using Metrics

The following is based on Goal-Question-Metric

Software Acquisition Gold Practice at the DACS

Gold Practices Web Site
(https://www.goldpractices.com/practices/gqm/)

SE 350 Software Process & Product Quality

SE 350 Software Process & Product Quality

Six Steps of GQM

 Steps 1-3: Definition

 Use business goals to drive identification of the right

metrics

 Steps 4-6: Data Collection and Interpretation

 Gather the measurement data and make effective use of

the measurement results to drive decision making and

improvements

SE 350 Software Process & Product Quality

Six Steps of GQM
Steps 1-3: Definition

1. Develop a set of corporate, division and project

business goals and associated measurement goals

for productivity and quality

2. Generate questions (based on models) that define

those goals as completely as possible in a

quantifiable way

3. Specify the measures needed to be collected to

answer those questions and track process and

product conformance to the goals

Use business goals to drive identification of the right metrics

SE 350 Software Process & Product Quality

Six Steps of GQM
Steps 4-6: Data Collection and Interpretation

4. Develop mechanisms for data collection

5. Collect, validate and analyze the data in real

time to provide feedback to projects for

corrective action

6. Analyze the data in a postmortem fashion to

assess conformance to the goals and to make

recommendations for future improvements

Gather the measurement data and make effective use of the

measurement results to drive decision making and improvements

SE 350 Software Process & Product Quality

SE 350 Software Process & Product Quality
30

Goals identify what we want to accomplish; questions, when
answered, tell us whether we are meeting the goals or help us

understand how to interpret them; and the metrics identify the
measurements that are needed to answer the questions and

quantify the goal

SE 350 Software Process & Product Quality

Example
(CR: Change Request)

SE 350 Software Process & Product Quality

Defining Goals—PPE Template

 Purpose: Analyze some (objects: processes, products,

other experience models) for the purpose of (why:

characterization, evaluation, prediction, motivation,

improvement)

 Perspective: with respect to (what aspect: cost, correctness,

defect removal, changes, reliability, user friendliness, etc.)

from the point of view of (who: user, customer, manager,

developer, corporation, etc.)

 Environment: in the following context: (where: problem

factors, people factors, resource factors, process factors,

etc.)

IEEE-STD-1061-1998 Standard for Software Quality Metrics Methodology

SE 350 Software Process & Product Quality

Goal Example

 Analyze the (system testing method) for the purpose of

(evaluation) with respect to a model of (defect removal

effectiveness) from the point of view of the (developer) in

the following context: the standard NASA/GSFC

environment, i.e., process model [e.g., Software

Engineering Laboratory (SEL) version of the waterfall

model], application (ground support software for

satellites), machine (running on a DEC 780 under VMS),

etc.

IEEE-STD-1061-1998 Standard for Software Quality Metrics Methodology

SE 350 Software Process & Product Quality

Key Practices of GQM (p. 1 of 3)

 Get the right people involved in the GQM process

 Set explicit measurement goals and state them explicitly

 Don’t create false measurement goals (for example,
matching metrics you already have or are easy to get)

 Acquire implicit quality models from the people involved

SE 350 Software Process & Product Quality

Key Practices of GQM (p. 2 of 3)

 Consider context

 Derive appropriate metrics

 Stay focused on goals when analyzing data

 Let the data be interpreted by the people involved

 Integrate the measurement activities with regular project

activities

SE 350 Software Process & Product Quality

Key Practices of GQM (p. 3 of 3)

 Do not use measurements for other purposes (such as to
assess team member productivity)

 Secure management commitment to support
measurement results

 Establish an infrastructure to support the measurement
program

 Ensure that measurement is viewed as a tool, not the end
goal

 Get training in GQM before going forward

SE 350 Software Process & Product Quality

Conclusions

 Measurement starts with an operational definition of some quality attribute

of interest

 We need to put some effort into choosing appropriate measures and

scales, and understanding their limitations

 Measurements have both systematic and random error

 Measurements must have both reliability and validity

 Often, hard to achieve both

 A common error is confusing correlation with causation

 A major concern in process design is reducing process variation:

 Six sigma is actually more about eliminating and identifying defects,

and identifying opportunities for process improvement

 Defects are NOT the sole concern in process design!

 There are other quality attributes than defects and failures

 Process optimization is oriented primarily towards repetitive activities

 GQM provides a method for identifying metrics from quality goals

