
SE 350 Software Process & Product Quality 1

Product Quality Engineering

SE 350 Software Process & Product Quality

Objectives

 Identify aspects of quality beyond functionality and few

defects/failures

 Performance, availability, usability, etc.

 For selected quality attributes

 Define the concept

 Identify engineering practices to provide the attribute

 Identify testing and other measures to gather indicators of

the attribute

2

SE 350 Software Process & Product Quality 3

Q vs q

 Quality includes many more attributes than just

absence of defects:

Features

Performance

Availability

Safety

Security

Reusability

Usability

Evolvability

 Extensibility

 Modifiability

 Portability

 Scalability

Cycletime

Cost

SE 350 Software Process & Product Quality 4

Q vs q

 Quality includes many more attributes than just

absence of defects:

Features

Performance

Availability

Safety

Security

Reusability

Usability

Evolvability

 Extensibility

 Modifiability

 Portability

 Scalability

Cycletime

Cost

Addressed

in lecture

SE 350 Software Process & Product Quality 5

ISO9126 Attribute Classification

Functionality
Suitability

Accurateness

Interoperability

Compliance

Security

Reliability
Maturity

Fault-tolerance

Recoverability

Usability
Understandability

Learnability

Operability

Efficiency
Time behavior

Resource behavior

Maintainability
Analyzability

Changeability

Stability

Testability

Portability
Adaptability

Installability

Conformance

Replaceability

ISO/IEC 9126 Software engineering -- Product quality

SE 350 Software Process & Product Quality

Measurement Information Model
[From ISO 15939 (2002) – Software Measurement Process]

Data

Collection

Data

Preparation

Data

Analysis

SE 350 Software Process & Product Quality 7

Product Quality Engineering

Objectives

Design

Analysis

Measurement

•Attribute goals

•Criticality of goals

•Preferred tradeoffs
•Quantitative /

Qualitative

•Fidelity varies

with effort,

available info
•Testing & Field Data

•Customer Feedback

Development

SE 350 Software Process & Product Quality

Functionality (Features)
 Requirements process defines objectives

 Includes decisions about release phasing

 Also address interoperability, standards compliance, …

 Requirements quality engineering practices

 Prototyping, customer interaction for early defect detection

 Requirements checklists (and templates) for defect elimination

 Domain modeling for completeness and streamlining

 Feasibility checking is a preliminary analysis step

 Analysis at requirements and design time

 Sequence/interaction diagrams for use cases

 Exploring alternative scenarios

 May use formal methods to analyze consistency & completeness

 Acceptance testing measures success in feature delivery

 Customer satisfaction is the ultimate measure

8

SE 350 Software Process & Product Quality

Performance Engineering Practices

 Specify performance objectives

 Even where user does not have specific requirements, useful

to set performance targets

 Analyze designs to determine performance

 Use performance benchmarking to obtain design parameters

 Performance modeling and simulation, possibly using

queuing and scheduling theory, for higher fidelity results

 Performance testing

 Benchmarking (individual operations), stress testing (loads),

soak testing (continuous operation)

9

SE 350 Software Process & Product Quality

Performance Objectives: Examples

 Response Time

 Call setup: < 250 ms

 System startup: < 2 minutes

 Resume service within 1.5 sec on channel switchover

 Throughput

 1000+ call requests /sec

 Capacity

 70+ simultaneous calls

 50+ concurrent users

 Resource Utilization

 Max 50% CPU usage on full load

 Max 16MB run time memory

 Max bandwidth: 96 kb/sec

10

SE 350 Software Process & Product Quality

Performance Analysis

 Example: Spell checker

 If you were building a spell checker that searched words in a

document against a wordlist, what will be its performance?

 Gives very approximate results

 Useful to get an idea of whether the performance goals are:

 Impossible to meet

 A significant design concern

 A “don’t care” (can be met easily)

 Helps to identify bottlenecks: which parts of the design need to

worry most about performance?

11

SE 350 Software Process & Product Quality

Metrics for Performance

 Within project:

 Performance targets (requirements)

 Estimated performance (design)

 Actual performance (testing)

 Across projects:

 Metrics available for some domains

 For example, polygons/sec for graphics, packets/sec for

networks

 Can measure performance on “standard” benchmarks

 But overall, no general performance metrics

12

SE 350 Software Process & Product Quality

Measuring Performance

 Benchmarking operations:

 Run operation 1000s of times, measure CPU time used,

divide to get average time

 Need to compensate for system effects: load variations,

caches, elapsed vs. CPU time, etc.

 Performance testing:

 Execute operations using applications – benchmark

performance

 Performance is very sensitive to configuration

 Load testing: performance testing under typical and high-use

operating conditions, where there may be multiple concurrent

requests active simultaneously

13

SE 350 Software Process & Product Quality

Availability Engineering Practices

 Defining availability objectives similar to reliability

 Based on cost impacts of downtime

 Design techniques for availability

 Implement fault-tolerance at software and hardware levels

 Availability analysis:

 Fault trees to determine possible causes of failures

 FMEA: Failure modes and effects analysis

 Sort of like fishbones!

 Attach MTBF numbers to entries and propagate up the tree

 Combine with recovery times to get estimated downtime

14

SE 350 Software Process & Product Quality

Availability Testing & Metrics

 Availability testing:

 Fault injection: introduce faults, study recovery behavior

 Fault injection capabilities built into code

 Study failure behavior during system tests: reliability &

availability

 Availability metrics:

 % of time system needs to be up and running (or)

 % of transactions that must go through to completion

 Availability goals of 99.9% not unusual

 8 hours of downtime per year

 Availability goal of 99.999% (“5 NINES”) for telecom etc.

 Less than 5 minutes downtime per year, including upgrades

 Requires upgrading the system while it is operational

15

SE 350 Software Process & Product Quality

Usability Engineering Practices

 Specify usability objectives

 Often internal to development team

 May be either quantitative or qualitative

 Workflow observation and modeling, user profiles

 Create interface prototype, analyze for usability

 Interface concept has primary impact on usability

 State machine models for navigation design and analysis

 Add usability “widgets” to improve usability properties

 Analysis and testing:

 Assess usability based on operational profiles

 Keystrokes/clicks/number of steps for frequent operations

 Assess usability using surveys: SUMI standardized survey tool

 User observation testing: watching actual users try to get work

done

 Alpha/beta testing

 16

SE 350 Software Process & Product Quality

Usability Objectives: Examples

 Usability:

 User types: Administrators & Operators

 Look and feel same as Windows packages (compliant with

Windows Style Guide)

 Server invocation in < 60 ms

 Invocation command shall have < 5 Command line

arguments

 Expert user should be able to complete the task in < 5 sec

 New users to start using the system in one hour without

training

 Context sensitive help for most of the common operations

 SUMI rating of 48 or higher

17

SE 350 Software Process & Product Quality

SUMI: Software Usability
Measurement Inventory

 SUMI is a survey-based approach for usability analysis

 Standard user questionnaire – 50 questions

 Pre-calibrated response analysis tool

 Constantly calibrated against 100s of major software

products

 Score is relative to state-of-the-art

 Score of 0-10 along five dimensions: efficiency, learnability,

helpfulness, control, affect

 Inputs: Actual interface and software behavior, prototypes

 SUMI score is a metric for usability

 http://www.ucc.ie/hfrg/questionnaires/sumi/whatis.html

 18

http://www.ucc.ie/hfrg/questionnaires/sumi/whatis.html

SE 350 Software Process & Product Quality

Usability: Quality Engineering

 Various guidelines on what to do, not to do:

 User Interface Hall of Shame, Hall of Fame

 http://homepage.mac.com/bradster/iarchitect/shame.htm

 Focus on eliminating various kinds of problems:

 Widget choices to eliminate input errors

 Such as a calendar to choose date instead of typing

 Graying out to eliminate invalid choices

 Input validation

 Fault detection & handling model to eliminate crashes

 Standardized libraries of UI widgets within applications, to

eliminate inconsistencies

19

http://homepage.mac.com/bradster/iarchitect/shame.htm

SE 350 Software Process & Product Quality

Quick Summary of Usability
Engineering

 UI design needs to focus first on the basics, then on the

cosmetics

 Focus on user characteristics, expectations and the operations

they want to perform

 Consistent interface concept is the most critical part of UI

design

 “Obvious” behavior is good!

 Need to figure out and use the right widgets for each UI task

 Cosmetic aspects are nice add-ons after the basics in place

 Usability is about users getting things done and feeling

comfortable using the software, not about impressing them!

20

SE 350 Software Process & Product Quality

Evolvability Engineering

 Identifying evolvability objectives:

 Likely types of future changes

 Designing with evolvability in mind:

 Most design patterns focus on evolvability

 Note tradeoffs: designs that increase evolvability along one

dimension may reduce evolvability along others

 For example, with OO, easier to add classes & behaviors,

harder to make some types of changes to operations (affects

multiple classes)

 Evolvability analysis with SAAM:

 SAAM: Software Architecture Analysis Method

 Review-based technique that analyzes the architecture to

determine how hard it is to make certain types of changes

 It is possible to analyze for subjective/qualitative attributes!

21

SE 350 Software Process & Product Quality

Evolvability Objectives: Examples

 Portability

 Application should run on Windows 7 as well

 Should be able to use different databases Oracle/SQL Server/...

 Scalability

 Increase the number of state vectors in the space

communications network from 66 to 110

 Extensibility

 Should be easy to incorporate password protection

 Medium effort to add context sensitive help feature to the GUI

 Diagnostic monitoring tool should be extensible with respect to

analysis capabilities for monitored data

 Maintainability

 The tool should allow easy addition of new message formats

 The tool should be customizable for new business processes

22

SE 350 Software Process & Product Quality

Evolvability Engineering Practices

 Addressing (only) those types of changes that are likely

 Avoiding over-engineering

 Refactoring approach from agile processes

 Generating multiple design options and comparing their quality

attributes

 Matching concerns with solutions: design patterns thinking

 Design-by-contract, built-in self-tests, test suites

 To provide early detection of failures due to changes

 Changes during development itself provide feedback on

evolvability

23

SE 350 Software Process & Product Quality 24

Paramater Goal
Arch/Design

based Projection

Test

Results

Benchmark

Value

Key Product-Quality Attributes(Performance, Usability…):

Product Quality Data Chart

Evolution

Req
Goal

Arch/Design

based Projection
Action plan

Overall Score

Efficiency

Affect

Helpfullness

Control

Learnability

Usability score from SUMI (if used):
Product Evolution Goals:

Nines goal

Nines Estimated

Nines Achieved

Availability Goal

 Motorola India Electronics Ltd, 2000

SE 350 Software Process & Product Quality 25

Summary

 Product Quality encompasses a number of attributes: “ilities”

 It is possible to systematically focus on each attribute

 Specify objectives, analyze designs, measure results during

testing

 Specific engineering practices to achieve given quality

attributes

 Objective metrics exist for some attributes but not others

 But subjective data is also useful

