
SE 350 Software Processes & Product Quality

Project Management Metrics

SE 350 Software Processes & Product Quality

Project Management Metrics

 Cycletime

 Productivity

 Staffing

 Requirements volatility

 Reuse metrics

 Activity progress measurement

 Estimation accuracy

SE 350 Software Processes & Product Quality

Cycletime

 Time from requirements to release (one cycle)

 Constant pressure in the corporate world to improve cycletime:

 Improves time-to-market

 Getting to market ahead of competition has big impact on market
share, profits

 Correlates heavily with cost

 Reduces gap between market survey and actual release to market

 Also important for custom solutions

 Getting deliverable earlier to customer saves them money (increases value
of deliverable – shorter “time to money”)

SE 350 Software Processes & Product Quality

Impact of Time-to-Market

Product Selling Price

Early arrival’s costs

Late arrival’s costs

Does not show market share impacts!

Premium

Products of early and late arrival both mature over time, reducing

costs, but early arrival has higher maturity at any given time.

$

Time

SE 350 Software Processes & Product Quality

Practices for Cycletime Reduction

 Incremental development (agile development)

 Quicker release cycle makes it easier to get new features into product

quickly

 Break up 12-month cycle into 4 cycles of 4 months each! (yes, that makes

sense!)

 Use of tools and technologies that improve productivity

 More concurrent engineering (increases coordination needs)

 Planning and risk management to avoid holdups

 Rightsizing teams to minimize development cycletime

 Avoid building from scratch: use existing libraries and products where

possible

 Invest in developing libraries and domain architectures

 Streamlining development through checklists, templates, workflow, etc.

SE 350 Software Processes & Product Quality

Measuring Cycletime

 Basically simple: project start date, end date

 Project cycletime vs. development cycletime:

 Development time: requirements-to-release

 May expend a lot of time before requirements phase

 Project concept, inception, etc.

 Issue: what about holdups “beyond one’s control”?

 May have a concept of “stopping cycletime clock”

 Shows the need for proper operational definitions

 Note the possibility of superior practices that avoid holdups

 Measurements & metrics can impact which practices are encouraged!

SE 350 Software Processes & Product Quality

Cycletime Metrics
 Challenging to create metric for cycletime

 Are projects really “comparable”?

 Different features, different complexity

 Customers may or may not be willing to pay for speed

 Avoid encouraging “bad practices” such as unreasonably small
increments

 Release must provide “significant value” to customer

 “Bucket” concept

 Group together “broadly similar” projects and measure

 Hard to get enough projects for statistical significance

 More important to compare with competitor cycletimes

 Focus on constant improvement

SE 350 Software Processes & Product Quality

Productivity

 Objective: Measure effectiveness of organizational practices in getting
work done

 Measuring individual productivity is not good:

 Extremely prone to abuses, creates pressures

 Impacts teaming, co-operation: “credit-grabbing”

 Hard to balance with quality

 Counter-productive in the longer term

 Metric: size of deliverable / effort expended

 Size of deliverable ≠ volume of work (KLOC)

 Credit for effective reuse, choosing good platforms, etc.

SE 350 Software Processes & Product Quality

Productivity Metrics
 Function-points/staff-month

 Better than KLOC / staff-month

 Avoids problems related to “density of code”

 Challenges in productivity comparisons:

 Accounting for complexity (compare only with same domain)

 But still, not all function points are created equal!

 Assigning proper value for tools / technology / platform usage

 “Size of deliverable” gives too much credit (what about added cost?)

 “Actual work done” gives too little

 Impact of other factors

 Requirements volatility, staff profile, nature of work (fresh / legacy), tough
product quality requirements, development infrastructure, time overheads
…

 Interpret with extreme caution!

 Minefield – Easy to overemphasize because it is so “bottom line”

SE 350 Software Processes & Product Quality

Using Productivity Numbers

 Trend information may add value

 Indicate whether there is constant improvement of practices

 Comparison with competitors or industry average

 OK measure of overall effectiveness

 Beware of differences in measurements, reporting

 Useful to evaluate technologies and practices

 Excellent complementary metric

 Improvements in other numbers should mostly show up in productivity for

example, COQ/COPQ balancing, fault injection

SE 350 Software Processes & Product Quality

Staffing
 Curves showing planned & actual staffing for each month:

 Gaps would indicate potential schedule impacts

 Significant increases in planned staffing must be accompanied by
training/induction plans

 May include turnover rates:

 People moving out, people added

 High turnover will impact productivity, schedule

 Limitation: shows raw numbers, not skill level

 Metrics:

 % staffing (actual/planned)

 % turnover

SE 350 Software Processes & Product Quality

Staffing Chart
Planned

Actual

Lost

Added

Time

Number of people

Month1 Month2 Month3 Month4 Month5

SE 350 Software Processes & Product Quality

Requirements Volatility

 Month-by-month percentage change in requirements

 Based on either use cases or numbered requirements

 Includes added/deleted/changed requirements

 High requirements volatility impacts schedule, fault injection, productivity

 Can use “control line” e.g. 10% requirements change more than this triggers risk
mitigation (impact analysis / replanning)

 If using tools to manage requirements, relatively easy to generate requirements volatility
metrics

 Limitation: does not show severity/impact of changes

SE 350 Software Processes & Product Quality

Reuse Metrics
 Percentage of reused code

 Hard to define how much to count as reused code:

 “Scavenged code” (cut-paste) is least valuable

 Libraries better – should we give full credit for each use?

 Using COTS (commercial-off-the-shelf) software better, for example, don’t
write your own OS or GUI framework – how do you count this?

 Domain engineering – creating standard product architectures and avoiding
developing a fresh from-scratch best – should we give full credit for each use?

 Common practice:

 Measure libraries and/or scavenged code

 Can add notes about use of COTS and/or domain architectures and
components

 Note that the end goal is productivity, not reuse

SE 350 Software Processes & Product Quality

Progress

 Objective: Measure progress against plan

 Avoid situation where lateness is realized just prior to release

 Practices:

 Define milestones 2-3 weeks apart

 Measure planned vs. actual completion dates

 If two weeks or more behind schedule, replan

 Re-negotiate fresh delivery dates with customer

 Metric:

 Chart of planned and actual completion dates

 Percentage slippage: (actual – planned) / planned completion time

SE 350 Software Processes & Product Quality

Progress: Milestone chart

Milestone Planned Actual

Initial requirements 14-Mar 13-Mar

Prototype 4-Apr 6-Apr

Requirements baselined 12-Apr 12-Apr

Initial design 23-Apr 28-Apr

V1 code complete 8-May 24-May (replan)

Integration done 12-May

28-May

29-May

Release 1 1-June

12-June

SE 350 Software Processes & Product Quality

Progress: Earned Value Charts

 A superior way to measure progress

 Focuses on value delivered instead of effort spent

 For each activity, define an “earned value” – some number of points

 Assign more earned value if more effort needed

 Track actual earned value:

 Total points earned for all completed activities

 Irrespective of actual effort expended

 May add another curve that shows actual effort expended

 Plot planned vs. actual earned value against time

 Shows % completion of project very clearly

SE 350 Software Processes & Product Quality

Burn-Up and Burn-Down Charts

Burn-Up (Earned Value) Release Burn-Down

Alistair Cockburn (http://alistair.cockburn.us/Earned-value+and+burn+charts)

SE 350 Software Processes & Product Quality

Gantt Charts

Implementation

Requirements
Requirements gathering

Prototyping

Specification

Design

Test plan development

Inspection
Software test and fix

Integration with hardware and system test

Final requirements review

Specification review

Final design review

Final test plan review

Beta test availability
Manufactured product availability

Week 0 4 8 12 16 20 24 28 32

From Lethbridge & Laganiere, “Object-oriented software engineering”

SE 350 Software Processes & Product Quality

Estimation Accuracy

 (Actual effort – Estimated effort) / Estimated effort

 Typically around 20% (that is, 20% underestimate) for “good” organizations

 Note that you expect to not estimate 20% of the required work

 Note that this often doesn’t translate to 20% slippage – either replanning or overtime

work

 If maturity is low, maybe 50% - 100% or even more

 Can track estimation accuracy for initial estimates as well as for “final” estimates

 Initial estimates may be prior to understanding requirements or identifying technical

risks

 Correlate with requirements volatility to get better picture

 Limitation: “Work expands to fill time available”

 Hard to detect overestimates

SE 350 Software Processes & Product Quality

Summary

 Can track a variety of metrics that reflect various project management
concerns

 Used to detect likelihood of various problems:

 Slippage, productivity loss, need for training

 Correlate multiple curves to assess health of project

 Typically all these curves on one big chart – Management Dashboard

 Each metric vulnerable to abuse

 Need to be careful how we use them!

