
SE 350 Software Processes & Product Quality

Project Management Metrics

SE 350 Software Processes & Product Quality

Project Management Metrics

 Cycletime

 Productivity

 Staffing

 Requirements volatility

 Reuse metrics

 Activity progress measurement

 Estimation accuracy

SE 350 Software Processes & Product Quality

Cycletime

 Time from requirements to release (one cycle)

 Constant pressure in the corporate world to improve cycletime:

 Improves time-to-market

 Getting to market ahead of competition has big impact on market
share, profits

 Correlates heavily with cost

 Reduces gap between market survey and actual release to market

 Also important for custom solutions

 Getting deliverable earlier to customer saves them money (increases value
of deliverable – shorter “time to money”)

SE 350 Software Processes & Product Quality

Impact of Time-to-Market

Product Selling Price

Early arrival’s costs

Late arrival’s costs

Does not show market share impacts!

Premium

Products of early and late arrival both mature over time, reducing

costs, but early arrival has higher maturity at any given time.

$

Time

SE 350 Software Processes & Product Quality

Practices for Cycletime Reduction

 Incremental development ( agile development)

 Quicker release cycle makes it easier to get new features into product

quickly

 Break up 12-month cycle into 4 cycles of 4 months each! (yes, that makes

sense!)

 Use of tools and technologies that improve productivity

 More concurrent engineering (increases coordination needs)

 Planning and risk management to avoid holdups

 Rightsizing teams to minimize development cycletime

 Avoid building from scratch: use existing libraries and products where

possible

 Invest in developing libraries and domain architectures

 Streamlining development through checklists, templates, workflow, etc.

SE 350 Software Processes & Product Quality

Measuring Cycletime

 Basically simple: project start date, end date

 Project cycletime vs. development cycletime:

 Development time: requirements-to-release

 May expend a lot of time before requirements phase

 Project concept, inception, etc.

 Issue: what about holdups “beyond one’s control”?

 May have a concept of “stopping cycletime clock”

 Shows the need for proper operational definitions

 Note the possibility of superior practices that avoid holdups

 Measurements & metrics can impact which practices are encouraged!

SE 350 Software Processes & Product Quality

Cycletime Metrics
 Challenging to create metric for cycletime

 Are projects really “comparable”?

 Different features, different complexity

 Customers may or may not be willing to pay for speed

 Avoid encouraging “bad practices” such as unreasonably small
increments

 Release must provide “significant value” to customer

 “Bucket” concept

 Group together “broadly similar” projects and measure

 Hard to get enough projects for statistical significance

 More important to compare with competitor cycletimes

 Focus on constant improvement

SE 350 Software Processes & Product Quality

Productivity

 Objective: Measure effectiveness of organizational practices in getting
work done

 Measuring individual productivity is not good:

 Extremely prone to abuses, creates pressures

 Impacts teaming, co-operation: “credit-grabbing”

 Hard to balance with quality

 Counter-productive in the longer term

 Metric: size of deliverable / effort expended

 Size of deliverable ≠ volume of work (KLOC)

 Credit for effective reuse, choosing good platforms, etc.

SE 350 Software Processes & Product Quality

Productivity Metrics
 Function-points/staff-month

 Better than KLOC / staff-month

 Avoids problems related to “density of code”

 Challenges in productivity comparisons:

 Accounting for complexity (compare only with same domain)

 But still, not all function points are created equal!

 Assigning proper value for tools / technology / platform usage

 “Size of deliverable” gives too much credit (what about added cost?)

 “Actual work done” gives too little

 Impact of other factors

 Requirements volatility, staff profile, nature of work (fresh / legacy), tough
product quality requirements, development infrastructure, time overheads
…

 Interpret with extreme caution!

 Minefield – Easy to overemphasize because it is so “bottom line”

SE 350 Software Processes & Product Quality

Using Productivity Numbers

 Trend information may add value

 Indicate whether there is constant improvement of practices

 Comparison with competitors or industry average

 OK measure of overall effectiveness

 Beware of differences in measurements, reporting

 Useful to evaluate technologies and practices

 Excellent complementary metric

 Improvements in other numbers should mostly show up in productivity for

example, COQ/COPQ balancing, fault injection

SE 350 Software Processes & Product Quality

Staffing
 Curves showing planned & actual staffing for each month:

 Gaps would indicate potential schedule impacts

 Significant increases in planned staffing must be accompanied by
training/induction plans

 May include turnover rates:

 People moving out, people added

 High turnover will impact productivity, schedule

 Limitation: shows raw numbers, not skill level

 Metrics:

 % staffing (actual/planned)

 % turnover

SE 350 Software Processes & Product Quality

Staffing Chart
Planned

Actual

Lost

Added

Time

Number of people

Month1 Month2 Month3 Month4 Month5

SE 350 Software Processes & Product Quality

Requirements Volatility

 Month-by-month percentage change in requirements

 Based on either use cases or numbered requirements

 Includes added/deleted/changed requirements

 High requirements volatility impacts schedule, fault injection, productivity

 Can use “control line” e.g. 10%  requirements change more than this triggers risk
mitigation (impact analysis / replanning)

 If using tools to manage requirements, relatively easy to generate requirements volatility
metrics

 Limitation: does not show severity/impact of changes

SE 350 Software Processes & Product Quality

Reuse Metrics
 Percentage of reused code

 Hard to define how much to count as reused code:

 “Scavenged code” (cut-paste) is least valuable

 Libraries better – should we give full credit for each use?

 Using COTS (commercial-off-the-shelf) software better, for example, don’t
write your own OS or GUI framework – how do you count this?

 Domain engineering – creating standard product architectures and avoiding
developing a fresh from-scratch best – should we give full credit for each use?

 Common practice:

 Measure libraries and/or scavenged code

 Can add notes about use of COTS and/or domain architectures and
components

 Note that the end goal is productivity, not reuse

SE 350 Software Processes & Product Quality

Progress

 Objective: Measure progress against plan

 Avoid situation where lateness is realized just prior to release

 Practices:

 Define milestones 2-3 weeks apart

 Measure planned vs. actual completion dates

 If two weeks or more behind schedule, replan

 Re-negotiate fresh delivery dates with customer

 Metric:

 Chart of planned and actual completion dates

 Percentage slippage: (actual – planned) / planned completion time

SE 350 Software Processes & Product Quality

Progress: Milestone chart

Milestone Planned Actual

Initial requirements 14-Mar 13-Mar

Prototype 4-Apr 6-Apr

Requirements baselined 12-Apr 12-Apr

Initial design 23-Apr 28-Apr

V1 code complete 8-May 24-May (replan)

Integration done 12-May

28-May

29-May

Release 1 1-June

12-June

SE 350 Software Processes & Product Quality

Progress: Earned Value Charts

 A superior way to measure progress

 Focuses on value delivered instead of effort spent

 For each activity, define an “earned value” – some number of points

 Assign more earned value if more effort needed

 Track actual earned value:

 Total points earned for all completed activities

 Irrespective of actual effort expended

 May add another curve that shows actual effort expended

 Plot planned vs. actual earned value against time

 Shows % completion of project very clearly

SE 350 Software Processes & Product Quality

Burn-Up and Burn-Down Charts

Burn-Up (Earned Value) Release Burn-Down

Alistair Cockburn (http://alistair.cockburn.us/Earned-value+and+burn+charts)

SE 350 Software Processes & Product Quality

Gantt Charts

Implementation

Requirements
Requirements gathering

Prototyping

Specification

Design

Test plan development

Inspection
Software test and fix

Integration with hardware and system test

Final requirements review

Specification review

Final design review

Final test plan review

Beta test availability
Manufactured product availability

Week 0 4 8 12 16 20 24 28 32

From Lethbridge & Laganiere, “Object-oriented software engineering”

SE 350 Software Processes & Product Quality

Estimation Accuracy

 (Actual effort – Estimated effort) / Estimated effort

 Typically around 20% (that is, 20% underestimate) for “good” organizations

 Note that you expect to not estimate 20% of the required work

 Note that this often doesn’t translate to 20% slippage – either replanning or overtime

work

 If maturity is low, maybe 50% - 100% or even more

 Can track estimation accuracy for initial estimates as well as for “final” estimates

 Initial estimates may be prior to understanding requirements or identifying technical

risks

 Correlate with requirements volatility to get better picture

 Limitation: “Work expands to fill time available”

 Hard to detect overestimates

SE 350 Software Processes & Product Quality

Summary

 Can track a variety of metrics that reflect various project management
concerns

 Used to detect likelihood of various problems:

 Slippage, productivity loss, need for training

 Correlate multiple curves to assess health of project

 Typically all these curves on one big chart – Management Dashboard

 Each metric vulnerable to abuse

 Need to be careful how we use them!

