Project Management Metrics

SE 350 Software Processes & Product Quality

Project Management Metrics

Cycletime

Productivity

Staffing

Requirements volatility

Reuse metrics

Activity progress measurement
Estimation accuracy

SE 350 Software Processes & Product Quality

Cycletime

= Time from requirements to release (one cycle)

= Constant pressure in the corporate world to improve cycletime:
= Improves time-to-market

= Getting to market ahead of competition has big impact on market
share, profits

= Correlates heavily with cost
= Reduces gap between market survey and actual release to market

= Also important for custom solutions

= Getting deliverable earlier to customer saves them money (increases value
of deliverable — shorter “time to money”)

SE 350 Software Processes & Product Quality

Impact of Time-to-Market

Does not show market share impacts!

Premipm
Product Selling Price

Early arrival’s costs

—
3
@

Products of early and late arrival both mature over time, reducing
costs, but early arrival has higher maturity at any given time.

SE 350 Software Processes & Product Quality

Practices for Cycletime Reduction

Incremental development (- agile development)
= Quicker release cycle makes it easier to get new features into product
quickly
= Break up 12-month cycle into 4 cycles of 4 months each! (yes, that makes
sense!)
Use of tools and technologies that improve productivity
More concurrent engineering (increases coordination needs)
Planning and risk management to avoid holdups
= Rightsizing teams to minimize development cycletime

Avoid building from scratch: use existing libraries and products where
possible

= Invest in developing libraries and domain architectures
Streamlining development through checklists, templates, workflow, etc.

SE 350 Software Processes & Product Quality

Measuring Cycletime

= Basically simple: project start date, end date

= Project cycletime vs. development cycletime:
= Development time: requirements-to-release
= May expend a lot of time before requirements phase
= Project concept, inception, etc.

= [Issue: what about holdups “beyond one’s control”?
= May have a concept of “stopping cycletime clock™
= Shows the need for proper operational definitions
= Note the possibility of superior practices that avoid holdups
= Measurements & metrics can impact which practices are encouraged!

SE 350 Software Processes & Product Quality

Cycletime Metrics

Challenging to create metric for cycletime
= Are projects really “comparable™?
= Different features, different complexity
= Customers may or may not be willing to pay for speed

= Avoid encouraging “bad practices” such as unreasonably small
increments

= Release must provide “significant value” to customer

“Bucket” concept
= Group together “broadly similar” projects and measure

Hard to get enough projects for statistical significance
More important to compare with competitor cycletimes

Focus on constant improvement

SE 350 Software Processes & Product Quality

Productivity

= Objective: Measure effectiveness of organizational practices in getting
work done
= Measuring individual productivity is not good:
= Extremely prone to abuses, creates pressures
= Impacts teaming, co-operation: “credit-grabbing”
= Hard to balance with quality
= Counter-productive in the longer term

= Metric: size of deliverable / effort expended

= Size of deliverable # volume of work (KLOC)
« Credit for effective reuse, choosing good platforms, etc.

SE 350 Software Processes & Product Quality

Productivity Metrics

= Function-points/staff-month
= Better than KLOC / staff-month
= Avoids problems related to “density of code”
= Challenges in productivity comparisons:
= Accounting for complexity (compare only with same domain)
= But still, not all function points are created equal!
= Assigning proper value for tools / technology / platform usage
= “Size of deliverable” gives too much credit (what about added cost?)
= “Actual work done” gives too little
= Impact of other factors

= Requirements volatility, staff profile, nature of work (fresh / legacy), tough
product quality requirements, development infrastructure, time overheads

= Interpret with extreme caution!
= Minefield — Easy to overemphasize because it is so “bottom line”

SE 350 Software Processes & Product Quality

Using Productivity Numbers

Trend information may add value
= Indicate whether there is constant improvement of practices

Comparison with competitors or industry average
= OK measure of overall effectiveness
= Beware of differences in measurements, reporting

Useful to evaluate technologies and practices

Excellent complementary metric

= Improvements in other numbers should mostly show up in productivity for
example, COQ/COPQ balancing, fault injection

SE 350 Software Processes & Product Quality

Staffing

Curves showing planned & actual staffing for each month:
= Gaps would indicate potential schedule impacts

= Significant increases in planned staffing must be accompanied by
training/induction plans

May include turnover rates:
= People moving out, people added
= High turnover will impact productivity, schedule

Limitation: shows raw numbers, not skill level

Metrics:
= % staffing (actual/planned)
= 9% turnover

SE 350 Software Processes & Product Quality

Staffing Chart

Planned

Number of people
Actual

Lost
Added

A

NN

,» Time

Monthl Month2 Month3 Month4 Month5

SE 350 Software Processes & Product Quality

Requirements Volatility

Month-by-month percentage change in requirements
= Based on either use cases or numbered requirements
= Includes added/deleted/changed requirements

High requirements volatility impacts schedule, fault injection, productivity

= Can use “control line” e.g. 10% => requirements change more than this triggers risk
mitigation (impact analysis / replanning)

If using tools to manage requirements, relatively easy to generate requirements volatility
metrics

Limitation: does not show severity/impact of changes

SE 350 Software Processes & Product Quality

Reuse Metrics

= Percentage of reused code
= Hard to define how much to count as reused code:

= “Scavenged code” (cut-paste) is least valuable
= Libraries better — should we give full credit for each use?

= Using COTS (commercial-off-the-shelf) software better, for example, don’t
write your own OS or GUI framework — how do you count this?

= Domain engineering — creating standard product architectures and avoiding
developing a fresh from-scratch best — should we give full credit for each use?

= Common practice:

= Measure libraries and/or scavenged code

= Can add notes about use of COTS and/or domain architectures and
components

= Note that the end goal is productivity, not reuse

SE 350 Software Processes & Product Quality

Progress

= Objective: Measure progress against plan
= Avoid situation where lateness is realized just prior to release

= Practices:
= Define milestones 2-3 weeks apart
= Measure planned vs. actual completion dates
= |f two weeks or more behind schedule, replan
= Re-negotiate fresh delivery dates with customer

s Metric;

= Chart of planned and actual completion dates
= Percentage slippage: (actual — planned) / planned completion time

SE 350 Software Processes & Product Quality

Progress: Milestone chart

Milestone Planned Actual
Initial requirements 14-Mar 13-Mar
Prototype 4-Apr 6-Apr
Requirements baselined 12-Apr 12-Apr
Initial design 23-Apr 28-Apr
V1 code complete 8-May 24-May (replan)
Integration done 2-May— 29-May
28-May
Release 1 I-dune——
12-June

SE 350 Software Processes & Product Quality

Progress: Earned Value Charts

A superior way to measure progress
= Focuses on value delivered instead of effort spent

For each activity, define an “earned value” — some number of points
= Assign more earned value if more effort needed

Track actual earned value:
= Total points earned for all completed activities
= lrrespective of actual effort expended
= May add another curve that shows actual effort expended

Plot planned vs. actual earned value against time
= Shows % completion of project very clearly

SE 350 Software Processes & Product Quality

Burn-Up and Burn-Down Charts

Release Burndown Chart (showing scope changes)

Story
4 100% functionality points
— /Ll Ship equipment 80
Asgign equipm ent 70 Shows ifcreass fom

— /Prep are equipm ent

original scope or estimates
o~ ,
ete gpen grders 60

Tool flisassem{lv 50

Shows

| decrease in
- ion 40 ¢ scope
| ap L I'
2 20 |

e e T > 10 |
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov 1

0

Iterations

Burn-Up (Earned Value) Release Burn-Down

Alistair Cockburn (http://alistair.cockburn.us/Earned-value+and+burn+charts)

SE 350 Software Processes & Product Quality

Gantt Charts

Requirements
Regquirements gathering |

Prototypmg E
Final requirements review
E Specification
pecification review

(” e w Desi ; ;

%Flnal desgn review <

Test plan development :
Final test plan review

Implementatio

I 5 Ilnspect|on

i | Software test and fix

Integratlon with hardware and system test 5

Beta test availability Q :

W W I I I { WManufacturedprodmt avallablllty <?

Week 0 4 8 28 32

From Lethbridge & Laganiere, “Object-oriented software engineering”

SE 350 Software Processes & Product Quality

Estimation Accuracy

= (Actual effort — Estimated effort) / Estimated effort

Typically around 20% (that is, 20% underestimate) for “good” organizations
Note that you expect to not estimate 20% of the required work
Note that this often doesn’t translate to 20% slippage — either replanning or overtime

work
= If maturity is low, maybe 50% - 100% or even more

Can track estimation accuracy for initial estimates as well as for “final” estimates
Initial estimates may be prior to understanding requirements or identifying technical

risks
= Correlate with requirements volatility to get better picture

= Limitation: “Work expands to fill time available”
= Hard to detect overestimates

SE 350 Software Processes & Product Quality

Summary

Can track a variety of metrics that reflect various project management
concerns

Used to detect likelihood of various problems:
= Slippage, productivity loss, need for training

Correlate multiple curves to assess health of project
= Typically all these curves on one big chart — Management Dashboard

Each metric vulnerable to abuse
= Need to be careful how we use them!

SE 350 Software Processes & Product Quality

