
SE 350 Software Process & Product Quality

Software Reliability Engineering

SE 350 Software Process & Product Quality

Objectives

 Look at some details on Software Reliability Engineering

(SRE)

 Steps in the SRE process

 Setting reliability objectives

 Using operational profiles to guide effort

 Interpreting reliability trend graphs

SE 350 Software Process & Product Quality

Reliability Focus

 “Testing can only prove the presence of errors, not their

absence.”

 Dijkstra

 So, focus on reliability, not defects

 Correctness

SE 350 Software Process & Product Quality

Software Reliability Engineering

 Software Reliability Engineering (SRE) addresses the

measurement, modeling, and improvement of software reliability

 Use quantitative information to choose the most cost-effective

software reliability strategies for your situation

SE 350 Software Process & Product Quality

Reliability Engineering Practices

 Define reliability objectives

 Use operational profiles to guide test execution

 Track failures during system tests

 Use reliability growth curves to track quality of product

 Release when quality of product meets reliability objectives

SE 350 Software Process & Product Quality

SRE Waterfall

 Predict software

reliability growth

 Trade-offs between

time, reliability, cost,

performance, etc.

 When to stop testing –

release decision

 How much post-release

support to plan for

Establish
Reliability
 Objectives

Plan Tests
Matched to OPs

Use Test
 Results to

Drive Decisions

Engineer “Just

 Right” Reliability
Develop

Operational
Profiles (OPs)

(Fielded System)
Determine Achieved
Reliability and OPs

SE 350 Software Process & Product Quality

Reliability and Failure Intensity

 Failure intensity: Number of failures per hour of operation

 Reliability is the inverse of failure intensity (FI)

Failure

Intensity

Reliability

R

TIME

FI

SE 350 Software Process & Product Quality

Defining Reliability Objectives

 Set quantitative targets for level of reliability that make

business sense

Impact of a failure FI Objective MTBF

100’s deaths, >$109 cost 10-9 114,000yrs

1-2 deaths, around $106 cost 10-6 114 yrs

$1,000 cost 10-3 6 weeks

$100 cost 10-2 100 h

$10 cost 10-1 10 h

$1 cost 1 1 h

From John D. Musa

SE 350 Software Process & Product Quality

Operational Profiles Guide Effort

 Guide software development priorities and quality effort by

what the user will use the most often

 Pareto principle: 20% of the software’s functionality or

“size” may satisfy 80% of the user’s needs

 Operational profiles expose most frequently used

product features

SE 350 Software Process & Product Quality

Operational Profile

 Sample application: Word Processor

Operation Frequency Approx. Relative Freq.

Open file 1/session (5

session/day)

0.001

Close file 1/session 0.001

Save file 25/session 0.04

Insert text 1000/session 1.0

Cut-and-paste 6/session 0.006

Check spelling 1000/session 1.0

Repaginate 100/session 0.1

Upgrade software 1/ 6 months 0.000001

SE 350 Software Process & Product Quality

Testing Based on Operational Profiles

 Done during black-box system testing

 Mix of test cases that match operational profile

 If possible, create automated test harness to execute test cases

 Need to run large numbers of test cases with randomized parameters

for statistical validity

 Execute test cases in randomized order, with selection patterns matching

frequencies in operational profile

 Simulating actual pattern of usage

SE 350 Software Process & Product Quality

Studying Patterns in the Trends of
Reliability Growth

SE 350 Software Process & Product Quality

Reliability Metric

 Estimated failure intensity

 (Reliability = 1 / failure intensity)

 Use reliability tracking and analysis tools to show actual (to date)

and predicted (future) estimates of how failure intensity varies over

time

 The curve is referred to as the “reliability growth curve”

 Note that the product being tested varies over time, with fixes and

new code

 In-process feedback on how quality is changing over time

SE 350 Software Process & Product Quality

Code Integration/Build Patterns
 Most large projects have periodic builds

 Development team integrates a new chunk of code into the

product and delivers to test team

 Test team does black box system testing

 Identifies defects (failures) and reports them to development team

 Track pattern of defects found during system testing to see how

reliability varies as development progresses

 Defects found should decrease over time as defects are removed,

but each new chunk of code adds more defects

 Pattern of reliability growth curve tells us about the code being added,

and whether the product code is becoming more stable

 Pattern can also be used to statistically predict how much more

testing will be needed before desired reliability target reached

 Useful predictions only after most of the code is integrated and

failure rates trend downward

SE 350 Software Process & Product Quality

Tracking Failures During Testing

 Enter data about when failures occurred during system testing into

reliability tool such as CASRE (Computer-Aided Software Reliability

Engineering tool) or Statistical Modeling and Estimation of Reliability

Functions for Software (SMERFS)

 Plots graph of failure intensity vs. development/test time

Failure

Intensity

Reliability

R

TIME

In concept, a nice

smooth curve of

reliability growth

From netserver.cerc.wvu.edu/numsse/Fall2003/691D/lec3.ppt

FI

SE 350 Software Process & Product Quality

Reliability
Over Time

Hardware “Bathtub” Model

Software Model

[DACS Software Reliability Source Book]

SE 350 Software Process & Product Quality

Predicting with a Software
Reliability Growth Model

[Rakitin]

SE 350 Software Process & Product Quality

A More Realistic Curve During
Development

From http://www.stsc.hill.af.mil/crosstalk/1996/06/Reliabil.asp

SE 350 Software Process & Product Quality

Many Statistical Models of Reliability Growth

 The Statistical Modeling and Estimation of Reliability Functions

for Software (SMERFS) contains a collection of several

reliability models, including:

 Get SMERFS at http://www.slingcode.com/smerfs/

 The Littlewood-Veral Bayesian
model

 The Musa execution time model

 The geometric model

 The nonhomogeneous Poisson
model for execution time data

 The Musa logarithmic Poisson
execution time model

 The generalized Poisson model
for interval data

 The nonhomogeneous Poisson
model for interval data

 The Brooks-Motley discrete
software reliability model

 The Schneidewind maximum
likelihood model

 The Yamada S-shaped reliability
growth model

SE 350 Software Process & Product Quality

Model Comparison Using SMERFS^3

[Dolores R. Wallace Practical Software Reliability Modeling]

SE 350 Software Process & Product Quality

Interpreting Reliability Growth Curves

 Spikes are normally associated with new code being added

 Larger volumes of code or more unreliable code causes bigger

spikes

 The curve itself tells us about the stability of the code base

over time

 If small code changes/additions cause a big spike, the code is

really poor quality or impacts many other modules heavily

 The code base is stabilizing when curve trends significantly

downward

 Release (ideally) only when curve drops below target failure

intensity objective … indicates right time to stop testing

 Can statistically predict how much more test effort needed

before target failure intensity objective needed

SE 350 Software Process & Product Quality

Limitations of Reliability Curves

 Operational profiles are often “best guesses,” especially for new

software products

 The reliability models are empirical and only approximations

 Failure intensity objectives should really be different for different

criticality levels of different kinds of failures

 Results in loss of statistical validity!

 Automating test execution is challenging (particularly building

verifiers) and costly

 But it does save a lot over the long run

 More worthwhile when reliability needs are high

 Hard to read much from the growth curves till later stages of

system testing … very late in the development cycle

SE 350 Software Process & Product Quality

Reliability Certification
 Another use for reliability engineering is to determine the reliability of

a received or acquired software product: Certification of Acceptability

 For example, you are evaluating web servers for your company

website – reliability is a major criterion

 Build a test suite representative of your likely usage

 Put up some pages, maybe including forms

 Create test suite that generates traffic

 Log failures such as not loading, wrong data received, server time

out

 Track failure patterns over time

 Evaluate multiple products or new releases using test suite, to determine

reliability

 Avoids major problems and delays with poor vendor software

 Note that this applies the analysis to a fixed code base

 Fewer problems with statistical validity

SE 350 Software Process & Product Quality

Example Certification Curve

Based on http://www.stsc.hill.af.mil/crosstalk/1996/06/Reliabil.asp

•Failure #1 Decision: Don’t

know enough yet, so continue

running

•Failure #2 Decision: Don’t

know enough yet, so continue

running

•Failure #3 Decision: Came

far enough later (in MTBF

sense) that the product is

certified acceptable

•Had failures #3-7 happened

as shown by the x’s, then the

failures are occurring too

frequently -- Reject

x
x
x
x

Run the product and track the time of occurrence of each failure

SE 350 Software Process & Product Quality

Summary

 Software Reliability Engineering is a scientific (statistical)

approach to reliability

 Vast improvement over common current practice

 “Keep testing until all our test cases run and we feel

reasonably confident”

 Avoids under-engineering as well as over-engineering (“zero

defects”)

 When done well, Software Reliability Engineering adds ~1% to

project cost

 Musa’s numbers: ~10% for medium-sized projects if you

include cost of automated testing

 Note that as the number of builds and releases increases,

automated testing more than pays for itself

