Software Reliability Engineering:

An Introduction

SE 350 Software Process & Product Quality



Objectives

= Introduce some concepts of software reliability engineering
= Focus on failures, not defects
= Operational profiles
= Measuring reliability
= These topics will be covered in more detail in next class session

SE 350 Software Process & Product Quality



Defects vs. Reliability

= Defects are a developer view of quality
= “All defects are not created equal”
= Defects in more frequently used or more critical sections of the
code matter a lot more

= Reliability and failures are the user view of quality
= How frequently does the software fail in typical usage?
= A “failure” is when the user cannot get their work done using
the software
= Note that this is against actual user needs, not the specification

SE 350 Software Process & Product Quality



Error —> Defect —> Fault —> Failure

= A human or tool error results in a defect
= The defect is the cause of the problem
= Occurs at development time
= A defect in the software may (or may not) lead to a “fault™ at
execution time
= Depends on whether the erroneous code is encountered
= Depends on whether the erroneous code produces wrong
results, given the specifics of the computation / situation
= A fault may or may not lead to a “failure” — behavior of software
that does not meet customer needs
= There may be incorrect behavior that does not matter to the
user
= The software may be fault-tolerant, so that the fault does not
cause a failure, for example, dropped packet gets retransmitted

SE 350 Software Process & Product Quality



Measuring Reliability

Create operational profiles
= ldentify the set of operations and their relative frequency
Create automated system tests
= Test all the operations, and build an automated verifier that
checks whether the operation produced the right result
Run system tests repeatedly, in random order, with relative
frequencies matching the operational profile
= Mimicking actual use of the software
Track the frequency of failures and plot graphs
= Measures reliability, results highly valid
= Subject to accuracy of the operational profile
= Much better measure of likely user experience than the
alternatives

SE 350 Software Process & Product Quality



Operational Profiles

= To measure reliability, we need to know how the software is used

= We need an “operational profile”:
= Set of user operations, with relative frequency of each
operation
= Focus quality assurance efforts on the most frequently used and
most critical operations

= The set of operations is known from the use cases

= In requirements engineering, need to gather information about
the relative frequency of different operations

SE 350 Software Process & Product Quality



Creating an Operational Profile

= Sample application: Word Processor

Operation Frequency Approx. Relative Frea.
Open file 1/session (5 0.001
session/day)
Close file 1/session 0.001
Save file 25/session 0.04
Insert text 1000/session 1.0
Cut-and-paste 6/session 0.006
Check spelling 1000/session 1.0
Repaginate 100/session 0.1
Upgrade software 1/ 6 months 0.000001

SE 350 Software Process & Product Quality



Value of Operational Profiles

= Knowing which operations users perform most frequently helps in:
= Release Planning: Which features to develop first
= Where to put in more design, inspection and testing effort
= Testing that focuses on what is most relevant to user
= Performance Engineering: Knowing usage hotspots
= Usability: Designing GUIs - menus, hotkeys, toolbars
= Implementing Workflow: Automate most frequent operations
(wizards), or streamline the flow between them

= Obviously, this is critical information to gather during
requirements!

SE 350 Software Process & Product Quality



Automating Testing

Create test cases for each operation, based on equivalence classes
= Randomize the input parameters
= Randomly pick which equivalence class, value within
equivalence class
Build a verifier, which performs the same operation as the
software, but in simpler ways
= Uses simple internal computational model to keep track of the
state of the system and expected results of operations
= Failure if actual result does not match expected result
Can run millions of tests instead of hundreds
= Same tests but in different sequence and with different input
values may result in different behaviors (because internal state
Is different)
= Those are the kinds of defects that usually make it to the field

SE 350 Software Process & Product Quality



Are Automated Verifiers Feasible?

= Verifier takes same sequence of inputs as actual software, performs
computations using algorithmic models of expected behavior, and
generates “expected result” values
= Database operations can be modeled with collections
= Embedded operations such as sending and receiving messages
can be modeled with state machines
= Document manipulation can be modeled with collections
= Often complexity of verifier comparable to actual software
= But no need for GUISs, file/database 1/0, exception handling,
sending/receiving messages, compression/decompression
= Note that cost of development is only a fraction of the cost of
testing, especially for high-reliability and safety-critical software
= Automated testing saves a lot, and achieves higher reliability

SE 350 Software Process & Product Quality



Tracking Failures

= Plot failure rates vs. time during development
= Results in “reliability growth curve”
= Shows how quality of software is changing as development
progresses
= Can also be used for reliability certification
= Can run enough tests to evaluate whether a given reliability
target is met (within a statistical confidence interval)
= Example: “95% confidence that the failure intensity <=4
failures per 100,000 hours of operation”
= Very useful as acceptance criteria for customers
= Also very useful when you depend on external software such as
compilers, operating systems, libraries, etc.
= We can generate MTBF (“mean time between failures”) numbers
for software, just like other engineering fields!

SE 350 Software Process & Product Quality



Conclusion

A focus on failures and reliability complements a focus on defects
= A customer view versus a developer view
Operational profiles focus quality assurance (and other) efforts
= Focus on the operations (features) used most often
Automated testing helps identify failures and failure rates
= Track failure intensity
= Reliability growth curves
= Statistical mean time between failures — an availability metric

We will cover these more next class session

SE 350 Software Process & Product Quality



