
SE 350 Software Process & Product Quality 

Software Reliability Engineering: 
 

An Introduction 



SE 350 Software Process & Product Quality 

Objectives 

 Introduce some concepts of software reliability engineering 

 Focus on failures, not defects 

 Operational profiles 

 Measuring reliability 

 These topics will be covered in more detail in next class session 



SE 350 Software Process & Product Quality 

Defects vs. Reliability 

 Defects are a developer view of quality 

 “All defects are not created equal” 

 Defects in more frequently used or more critical sections of the 

code matter a lot more 

 

 Reliability and failures are the user view of quality 

 How frequently does the software fail in typical usage? 

 A “failure” is when the user cannot get their work done using 

the software 

 Note that this is against actual user needs, not the specification 

 



SE 350 Software Process & Product Quality 

Error –> Defect –> Fault –> Failure 
 A human or tool error results in a defect 

 The defect is the cause of the problem 

 Occurs at development time 

 A defect in the software may (or may not) lead to a “fault” at 

execution time 

 Depends on whether the erroneous code is encountered 

 Depends on whether the erroneous code produces wrong 

results, given the specifics of the computation / situation 

 A fault may or may not lead to a “failure” – behavior of software 

that does not meet customer needs 

 There may be incorrect behavior that does not matter to the 

user 

 The software may be fault-tolerant, so that the fault does not 

cause a failure, for example, dropped packet gets retransmitted 



SE 350 Software Process & Product Quality 

Measuring Reliability 

 Create operational profiles 

 Identify the set of operations and their relative frequency 

 Create automated system tests 

 Test all the operations, and build an automated verifier that 

checks whether the operation produced the right result 

 Run system tests repeatedly, in random order, with relative 

frequencies matching the operational profile 

 Mimicking actual use of the software 

 Track the frequency of failures and plot graphs 

 Measures reliability, results highly valid 

 Subject to accuracy of the operational profile 

 Much better measure of likely user experience than the 

alternatives 



SE 350 Software Process & Product Quality 

Operational Profiles 

 To measure reliability, we need to know how the software is used 

 

 We need an “operational profile”: 

 Set of user operations, with relative frequency of each 

operation 

 Focus quality assurance efforts on the most frequently used and 

most critical operations 

 

 The set of operations is known from the use cases 

 In requirements engineering, need to gather information about 

the relative frequency of different operations 



SE 350 Software Process & Product Quality 

Creating an Operational Profile 

 Sample application: Word Processor 

Operation Frequency Approx. Relative Freq. 

Open file 1/session (5 

session/day) 

0.001 

Close file 1/session 0.001 

Save file 25/session 0.04 

Insert text 1000/session 1.0 

Cut-and-paste 6/session 0.006 

Check spelling 1000/session 1.0 

Repaginate 100/session 0.1 

Upgrade software 1/ 6 months 0.000001 



SE 350 Software Process & Product Quality 

Value of Operational Profiles 

 Knowing which operations users perform most frequently helps in: 

 Release Planning: Which features to develop first 

 Where to put in more design, inspection and testing effort 

 Testing that focuses on what is most relevant to user 

 Performance Engineering: Knowing usage hotspots 

 Usability: Designing GUIs - menus, hotkeys, toolbars 

 Implementing Workflow: Automate most frequent operations 

(wizards), or streamline the flow between them 

 

 Obviously, this is critical information to gather during 

requirements! 



SE 350 Software Process & Product Quality 

Automating Testing 
 Create test cases for each operation, based on equivalence classes 

 Randomize the input parameters 

 Randomly pick which equivalence class, value within 

equivalence class 

 Build a verifier, which performs the same operation as the 

software, but in simpler ways 

 Uses simple internal computational model to keep track of the 

state of the system and expected results of operations 

 Failure if actual result does not match expected result 

 Can run millions of tests instead of hundreds 

 Same tests but in different sequence and with different input 

values may result in different behaviors (because internal state 

is different) 

 Those are the kinds of defects that usually make it to the field 

 



SE 350 Software Process & Product Quality 

Are Automated Verifiers Feasible? 

 Verifier takes same sequence of inputs as actual software, performs 

computations using algorithmic models of expected behavior, and 

generates “expected result” values 

 Database operations can be modeled with collections 

 Embedded operations such as sending and receiving messages 

can be modeled with state machines 

 Document manipulation can be modeled with collections 

 Often complexity of verifier comparable to actual software 

 But no need for GUIs, file/database I/O, exception handling, 

sending/receiving messages, compression/decompression 

 Note that cost of development is only a fraction of the cost of 

testing, especially for high-reliability and safety-critical software 

 Automated testing saves a lot, and achieves higher reliability 

 

 



SE 350 Software Process & Product Quality 

Tracking Failures 

 Plot failure rates vs. time during development 

 Results in “reliability growth curve” 

 Shows how quality of software is changing as development 

progresses 

 Can also be used for reliability certification 

 Can run enough tests to evaluate whether a given reliability 

target is met (within a statistical confidence interval) 

 Example: “95% confidence that the failure intensity <= 4 

failures per 100,000 hours of operation” 

 Very useful as acceptance criteria for customers 

 Also very useful when you depend on external software such as 

compilers, operating systems, libraries, etc. 

 We can generate MTBF (“mean time between failures”) numbers 

for software, just like other engineering fields! 



SE 350 Software Process & Product Quality 

Conclusion 

 A focus on failures and reliability complements a focus on defects 

 A customer view versus a developer view 

 Operational profiles focus quality assurance (and other) efforts 

 Focus on the operations (features) used most often 

 Automated testing helps identify failures and failure rates 

 Track failure intensity 

 Reliability growth curves 

 Statistical mean time between failures – an availability metric 

 

 We will cover these more next class session 


