
SE 350 Software Process & Product Quality 

Software Reliability Engineering: 
 

An Introduction 



SE 350 Software Process & Product Quality 

Objectives 

 Introduce some concepts of software reliability engineering 

 Focus on failures, not defects 

 Operational profiles 

 Measuring reliability 

 These topics will be covered in more detail in next class session 



SE 350 Software Process & Product Quality 

Defects vs. Reliability 

 Defects are a developer view of quality 

 “All defects are not created equal” 

 Defects in more frequently used or more critical sections of the 

code matter a lot more 

 

 Reliability and failures are the user view of quality 

 How frequently does the software fail in typical usage? 

 A “failure” is when the user cannot get their work done using 

the software 

 Note that this is against actual user needs, not the specification 

 



SE 350 Software Process & Product Quality 

Error –> Defect –> Fault –> Failure 
 A human or tool error results in a defect 

 The defect is the cause of the problem 

 Occurs at development time 

 A defect in the software may (or may not) lead to a “fault” at 

execution time 

 Depends on whether the erroneous code is encountered 

 Depends on whether the erroneous code produces wrong 

results, given the specifics of the computation / situation 

 A fault may or may not lead to a “failure” – behavior of software 

that does not meet customer needs 

 There may be incorrect behavior that does not matter to the 

user 

 The software may be fault-tolerant, so that the fault does not 

cause a failure, for example, dropped packet gets retransmitted 



SE 350 Software Process & Product Quality 

Measuring Reliability 

 Create operational profiles 

 Identify the set of operations and their relative frequency 

 Create automated system tests 

 Test all the operations, and build an automated verifier that 

checks whether the operation produced the right result 

 Run system tests repeatedly, in random order, with relative 

frequencies matching the operational profile 

 Mimicking actual use of the software 

 Track the frequency of failures and plot graphs 

 Measures reliability, results highly valid 

 Subject to accuracy of the operational profile 

 Much better measure of likely user experience than the 

alternatives 



SE 350 Software Process & Product Quality 

Operational Profiles 

 To measure reliability, we need to know how the software is used 

 

 We need an “operational profile”: 

 Set of user operations, with relative frequency of each 

operation 

 Focus quality assurance efforts on the most frequently used and 

most critical operations 

 

 The set of operations is known from the use cases 

 In requirements engineering, need to gather information about 

the relative frequency of different operations 



SE 350 Software Process & Product Quality 

Creating an Operational Profile 

 Sample application: Word Processor 

Operation Frequency Approx. Relative Freq. 

Open file 1/session (5 

session/day) 

0.001 

Close file 1/session 0.001 

Save file 25/session 0.04 

Insert text 1000/session 1.0 

Cut-and-paste 6/session 0.006 

Check spelling 1000/session 1.0 

Repaginate 100/session 0.1 

Upgrade software 1/ 6 months 0.000001 



SE 350 Software Process & Product Quality 

Value of Operational Profiles 

 Knowing which operations users perform most frequently helps in: 

 Release Planning: Which features to develop first 

 Where to put in more design, inspection and testing effort 

 Testing that focuses on what is most relevant to user 

 Performance Engineering: Knowing usage hotspots 

 Usability: Designing GUIs - menus, hotkeys, toolbars 

 Implementing Workflow: Automate most frequent operations 

(wizards), or streamline the flow between them 

 

 Obviously, this is critical information to gather during 

requirements! 



SE 350 Software Process & Product Quality 

Automating Testing 
 Create test cases for each operation, based on equivalence classes 

 Randomize the input parameters 

 Randomly pick which equivalence class, value within 

equivalence class 

 Build a verifier, which performs the same operation as the 

software, but in simpler ways 

 Uses simple internal computational model to keep track of the 

state of the system and expected results of operations 

 Failure if actual result does not match expected result 

 Can run millions of tests instead of hundreds 

 Same tests but in different sequence and with different input 

values may result in different behaviors (because internal state 

is different) 

 Those are the kinds of defects that usually make it to the field 

 



SE 350 Software Process & Product Quality 

Are Automated Verifiers Feasible? 

 Verifier takes same sequence of inputs as actual software, performs 

computations using algorithmic models of expected behavior, and 

generates “expected result” values 

 Database operations can be modeled with collections 

 Embedded operations such as sending and receiving messages 

can be modeled with state machines 

 Document manipulation can be modeled with collections 

 Often complexity of verifier comparable to actual software 

 But no need for GUIs, file/database I/O, exception handling, 

sending/receiving messages, compression/decompression 

 Note that cost of development is only a fraction of the cost of 

testing, especially for high-reliability and safety-critical software 

 Automated testing saves a lot, and achieves higher reliability 

 

 



SE 350 Software Process & Product Quality 

Tracking Failures 

 Plot failure rates vs. time during development 

 Results in “reliability growth curve” 

 Shows how quality of software is changing as development 

progresses 

 Can also be used for reliability certification 

 Can run enough tests to evaluate whether a given reliability 

target is met (within a statistical confidence interval) 

 Example: “95% confidence that the failure intensity <= 4 

failures per 100,000 hours of operation” 

 Very useful as acceptance criteria for customers 

 Also very useful when you depend on external software such as 

compilers, operating systems, libraries, etc. 

 We can generate MTBF (“mean time between failures”) numbers 

for software, just like other engineering fields! 



SE 350 Software Process & Product Quality 

Conclusion 

 A focus on failures and reliability complements a focus on defects 

 A customer view versus a developer view 

 Operational profiles focus quality assurance (and other) efforts 

 Focus on the operations (features) used most often 

 Automated testing helps identify failures and failure rates 

 Track failure intensity 

 Reliability growth curves 

 Statistical mean time between failures – an availability metric 

 

 We will cover these more next class session 


