SWEN-383

Software Design Principles & Patterns

Design

“Designs are not good or bad, they are
more or less useful.”
- Kent Beck (Well Known SW Developer)

Life-Cycle

Process

Software Development Life-Cycle

ALL software development projects, big and
small, follow a process that defines the activities
which are performed in each of the project’s
life-cycle phases leading to product release.

(If you choose not to decide on a process, then
you still have made a choice.)
- “Freewill”, Rush — Permanent Waves, 1980

Product Life Cycle Phases

Requirements

Analysis

Design
Implementation/Construction (code)
Test / Evaluation

Deployment & Maintenance

Iterative & Incremental Process

Planning

Requirements

Analysis & Design
Planning Implementation
Initial .
Planning Flannin
e

R1

Planning
Initial

g

; \: Plaﬂnlrr\anmentllmﬂ

Requirements . .
Analysis & Design

Implementation
A
Evalu& J
Te

sting

Deployment

Requirements

Analysis & Design Requirements Requirements

Planning
Initial
Planning
Deployment
Evaluation
Testing Evaluation

R2

Requirements.

Analysis & Design Analysis & Design
i Plannin, .
Implementation Ptanning Implementation y Implementation
Initial nitial
Planning Planning

Analysis & Design

Deployment
Evaluation
Testing

Rn

Deployment Deployment
Evaluation
Testing Testing

R3 "=

Upstream vs Downstream

The “flow” of development activities from early
to later activities:

* Increment of Product Life-Cycle:
— R1 ->R2 -> ... Major Release

* |teration of Life-Cycle:
— Req -> Design -> Code -> Test -> Deploy

Managed Change

Economics of SW Development

Cost (SS) = Resources(people) x Time

Cost of Change

20x

1x 5x

Requirements Design Code

Phase Detected

12

Software Product Requirements

* Functional Requirements — “what”
the system needs to do.

— “Customer can withdraw funds from
ATM”

* Non-Functional Requirements —
“how” the system satisfies a
requirement.

— “Customer transactions occur securely”

13

Non-Functional Requirements

* User/Product perspective:

— Usability, Performance, Security, Reliability

* Developer/Product perspective:
— Maintainability, Extendibility, Scalability, Testability

* Non-functional requirements = “ilaties”

Non-functional requirements drive design.

14

Design

“Designs are not good or bad, they are
more or less useful.”
- Kent Beck (Well Known SW Developer)

A useful design allows developers to efficiently
(cost effective) address product changes,
especially in downstream activities — i.e. after
deployment.

Terminology Soup = concepts that
give it flavor

16

WeatherStation

 Example to guide us through practice

REFACTORING

e When SHOULD we do it?

e When DO we do it?

e What are the benefits?

TECHNICAL DEBT

19

20

Thread

+Thread(Runnable)

+run()

<<interface>>
Runnable

A

+run()

JAN

Weathe.rStation

+run()

+main()

KelvinTempSensor

+reading()

Measures of good Design

Cohesion

Coupling

\ 4

22

aWeatherStation aKelvinTempSensor

reading()

return

aWeatherStation aKelvinTempSensor System

reading()

I
2
1
T T T T T T T T T T T R reurn
|
I
I

aWeatherStation aKelvinTempSensor System
]
Loop | |
|
[true] reading() >
‘ ____________
return
printf() >
‘ _______________________

return

Software Design Principles & Patterns

* Design
— Design principles and trade-offs
— Design pattern catalog

* Intent, structure, behavior, implementation, trade-offs

— Design notation
 UML class diagrams
 UML object diagrams
 UML sequence diagrams

— Design quality
e Technical debt, code smells, anti-patterns, refactoring

* Problem-based learning

— Team design problem
— Version control

Design Principles

High cohesion

Loose coupling

Don’t Repeat Yourself
Encapsulation

Separation of Concerns

Single Responsibility Principle

Law of Demeter

Favor composition over inheritance
Delegation

Program to an interface, not the implementation
etc.

Design Patterns

* Reusable solution to a recurring design
problem

— Balance the design principles
— Vocabulary for design discourse

