
SWEN-383
Software Design Principles & Patterns

1

Introduction



Design(?) 

2



Design 

“Designs are not good or bad, they are 
more or less useful.”
- Kent Beck (Well Known SW Developer)

3



Life-Cycle

4



Process

5



Software Development Life-Cycle

ALL software development projects, big and 
small, follow a process that defines the activities 
which are performed in each of the project’s 
life-cycle phases leading to product release.

(If you choose not to decide on a process, then 
you still have made a choice.)
- “Freewill”, Rush – Permanent Waves, 1980

6



Product Life Cycle Phases

• Requirements

• Analysis

• Design

• Implementation/Construction (code)

• Test / Evaluation

• Deployment & Maintenance

7



Iterative & Incremental Process

8

R1 R3R2 Rn…



Upstream vs Downstream

The “flow” of development activities from early 
to later activities:

• Increment of Product Life-Cycle:

– R1 -> R2 -> … Major Release

• Iteration of Life-Cycle:

– Req -> Design -> Code -> Test -> Deploy

9



Car in for repair?

10



Managed Change

11



Economics of SW Development

Cost ($$) = Resources(people) x Time

12



13

Software Product Requirements

• Functional Requirements – “what” 
the system needs to do.

– “Customer can withdraw funds from 
ATM”

• Non-Functional Requirements –
“how” the system satisfies a 
requirement.

– “Customer transactions occur securely”



14

Non-Functional Requirements

• User/Product perspective:

– Usability, Performance, Security, Reliability

• Developer/Product perspective:

– Maintainability, Extendibility, Scalability, Testability

• Non-functional requirements = “ilaties”

Non-functional requirements drive design.



Design 

“Designs are not good or bad, they are 
more or less useful.”
- Kent Beck (Well Known SW Developer)

A useful design allows developers to efficiently 
(cost effective) address product changes, 
especially in downstream activities – i.e. after 
deployment.

15



Terminology Soup = concepts that 
give it flavor

16



WeatherStation

• Example to guide us through practice

17



REFACTORING

• When SHOULD we do it?

• When DO we do it?

• What are the benefits?

18



TECHNICAL DEBT

19



MODELing

20

Abstraction



21



Measures of good Design

Coupling

22

Cohesion



23



24



25



Software Design Principles & Patterns

• Design

– Design principles and trade-offs

– Design pattern catalog
• Intent, structure, behavior, implementation, trade-offs

– Design notation
• UML class diagrams

• UML object diagrams

• UML sequence diagrams

– Design quality
• Technical debt, code smells, anti-patterns, refactoring

• Problem-based learning

– Team design problem

– Version control



Design Principles
• High cohesion

• Loose coupling

• Don’t Repeat Yourself

• Encapsulation

• Separation of Concerns

• Single Responsibility Principle

• Law of Demeter

• Favor composition over inheritance

• Delegation

• Program to an interface, not the implementation

• etc.



Design Patterns
• Reusable solution to a recurring design 

problem

– Balance the design principles

– Vocabulary for design discourse


