UML Essentials
Static Modeling

Excerpts from: Object Oriented Software Engineering
by Lethbridge/Laganiere
and
Applying UML and Patterns
by Larman, C.



Class model (diagram) elements

» Classes
* represent the types of data themselves

« Associations
* represent linkages between instances of classes

o Attributes

« are simple data found in classes and their instances

« Operations

» represent the functions performed by the classes and their
instances

« Generalizations
« group classes into inheritance hierarchies



Classes

*A class is simply represented as a box with the name of the class
Inside
« The diagram may also show the attributes and operations
 The complete signature of an operation is:
operationName(parameterName: parameterType ...): returnType

Rectangle Rectangle Rectangle Rectangle Rectangle
getArea() height height - height:int
resize() width width - width:int

getArea() + getArea(): mnt
resize() + resize(1nt.1nt)
‘void




Associlations and Multiplicity

An association is used to show how two classes are related to each
other

« Symbols indicating multiplicity are shown at each end of the association
« Each association can be labelled, to make explicit the nature of the

association
- sk worksFor |
Employee Company
AdministrativeAssistant — Manager
SUpervisor
Company l 4 BoardOfDirectors
_ 01 allocatedTo p ok -
Office Employee
0.3..8 sk | .
Person : = BoardOfDirectors
boardMember




Analyzing and validating associations

* Many-to-many

« A secretary can work for many managers

« A manager can have many secretaries
Secretaries can work in pools
Managers can have a group of secretaries
Some managers might have zero secretaries.

Is it possible for a secretary to have, perhaps temporarily, zero
managers?

Secretary L= Manager
supervisor




Analyzing and validating associations

*Avoid unnecessary one-to-one associations

. Avoid this do this
Person PersonInfo Person
1 |
name address name
email address
birthdate email
birthdate




Directionality In associations

« Associations are by default are undefined, though many tools
treat these as bi-directional.

 Itis possible to limit the direction of an association by adding
an arrow at one end

Day > Note




Generalization

*Specializing a superclass into two or more subclasses

 The discriminator is a label that describes the criteria used in
the specialization

AquaticAnimal

[LandAnimal

Carnivore

Herbivore




Associations versus generalizations
IN object diagrams

« Associations describe the relationships that will exist
between instances at run time.

« When you show an instance diagram generated from a class
diagram, there will be an instance of both classes joined by an
association

« Generalizations describe relationships between classes
In class diagrams.
« They do not appear in instance diagrams at all.

* An instance of any class should also be considered to be an
Instance of each of that class’s superclasses



More Advanced Features: Aggregation

« Aggregations are special associations that represent ‘part-whole’
relationships.

« The ‘whole’ side is often called the assembly or the aggregate
« This symbol is a shorthand notation association named isPartOf

*As a general rule, you can mark an association as an aggregation if the following are true:
* You can state that
 the parts ‘are part of’ the aggregate
» or the aggregate ‘is composed of’ the parts

 When something owns or controls the aggregate, then they also own or control the
parts

Vehicle <> ] *| VehiclePart

Country > | Region

10



Interfaces

*An interface describes a portion of the visible behaviour of a set
of objects.

* An interface is similar to a class, except it lacks instance
variables and implemented methods

«interface» _ _
Person Cashier Machine Person Machine
/\ withdraw /\ /\
deposit Cashier Cashier
' Employee ATM
Employee ATM

11



Mapping Requirements to Design Components

Component 1
-data 1
- behavior 1

Requirements
Documents

Component 2
- data 2
- behavior 2

component 3
-data 3
- behavior 3

Component 4
-data 4
- behavior 4

Component 5
-data 5
- behavior 5

pulidnon

* Design must satisfy
requirements

— Everything (data and
behavior) in the
requirements must be
mapped to the design
components

— Decide what functionality
goes into which
component

 As you do the mapping,
assess functional
cohesion and coupling

— Strive for low coupling
and high cohesion




