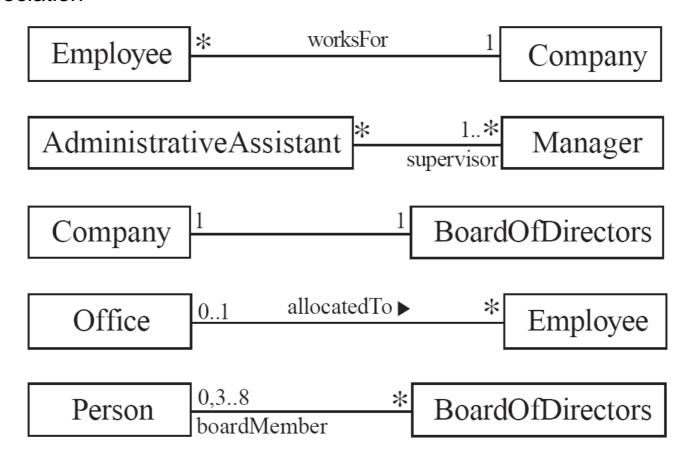
UML Essentials Static Modeling

Excerpts from: Object Oriented Software Engineering
by Lethbridge/Laganière
and
Applying UML and Patterns
by Larman, C.

Class model (diagram) elements

- Classes
 - represent the types of data themselves
- Associations
 - represent linkages between instances of classes
- Attributes
 - are simple data found in classes and their instances
- Operations
 - represent the functions performed by the classes and their instances
- Generalizations
 - group classes into inheritance hierarchies

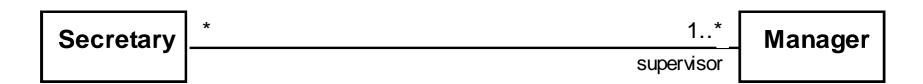
Classes


- •A class is simply represented as a box with the name of the class inside
 - The diagram may also show the attributes and operations
 - The complete signature of an operation is: operationName(parameterName: parameterType ...): returnType

Rectangle Rectangle Rectangle Rectangle Rectangle height height - height: int getArea() width - width: int resize() width + getArea(): int getArea() + resize(int,int) resize() :void

Associations and Multiplicity

An association is used to show how two classes are related to each other


- Symbols indicating multiplicity are shown at each end of the association
- Each association can be labelled, to make explicit the nature of the association

Analyzing and validating associations

Many-to-many

- A secretary can work for many managers
- A manager can have many secretaries
- Secretaries can work in pools
- Managers can have a group of secretaries
- Some managers might have zero secretaries.
- Is it possible for a secretary to have, perhaps temporarily, zero managers?

Analyzing and validating associations

Avoid unnecessary one-to-one associations

Person

name

PersonInfo

address
email
birthdate

Avoid this

PersonInfo

name
address
email
birthdate

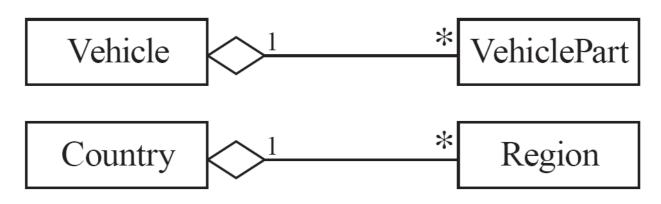
Directionality in associations

- Associations are by default are undefined, though many tools treat these as bi-directional.
- It is possible to limit the direction of an association by adding an arrow at one end

Generalization

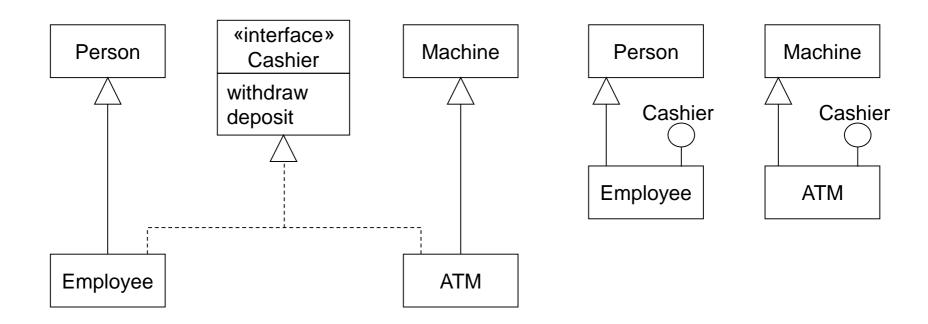
- Specializing a superclass into two or more subclasses
 - The discriminator is a label that describes the criteria used in the specialization

Associations versus generalizations in object diagrams

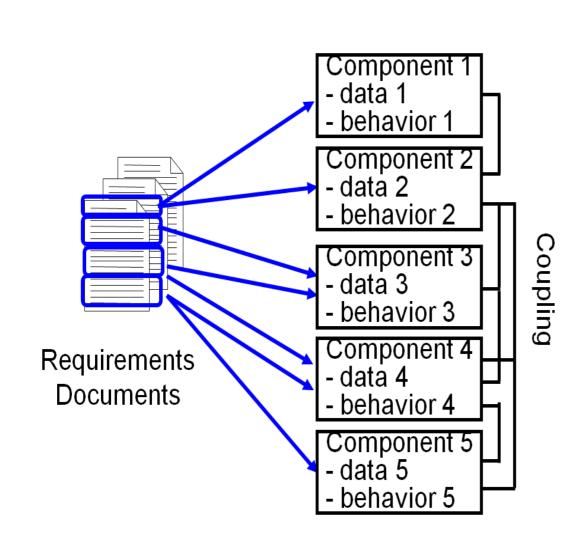

- Associations describe the relationships that will exist between *instances* at **run time**.
 - When you show an instance diagram generated from a class diagram, there will be an instance of both classes joined by an association
- Generalizations describe relationships between classes in class diagrams.
 - They do not appear in instance diagrams at all.
 - An instance of any class should also be considered to be an instance of each of that class's superclasses

More Advanced Features: Aggregation

- Aggregations are special associations that represent 'part-whole' relationships.
 - The 'whole' side is often called the assembly or the aggregate
 - This symbol is a shorthand notation association named isPartOf


•As a general rule, you can mark an association as an aggregation if the following are true:

- You can state that
 - the parts 'are part of' the aggregate
 - or the aggregate 'is composed of' the parts
- When something owns or controls the aggregate, then they also own or control the parts



Interfaces

- •An interface describes a *portion of the visible behaviour* of a set of objects.
 - An interface is similar to a class, except it lacks instance variables and implemented methods

Mapping Requirements to Design Components

- Design must satisfy requirements
 - Everything (data and behavior) in the requirements must be mapped to the design components
 - Decide what functionality goes into which component
- As you do the mapping, assess functional cohesion and coupling
 - Strive for **low** coupling and **high** cohesion