
Version Control Systems

Teammates working on software need:
◦Sharing: keep the code in one place
◦Concurrent Editing: work at the same time
◦Revert: undo changes to a working state
◦History: to understand what has been done

Version control systems provide all of these

Keeping it all together

Consider the alternative
Shared File system

Shared file system (e.g. NFS) only keeps the
most recent version

Consider the alternative

Another alternative:
◦Disallow concurrent editing at the file level
◦Lock the file, work, then unlock.

Still not ideal
◦Not good for working on the same code – too much
coordination
◦Or, nobody looks at each other’s codes
◦Need to wait on people to unlock
◦What if you forget to lock?

Okay… locking?

How about a Google Docs approach?
◦Everyone is editing the same code at once
◦Changes are seen immediately.

Nope
◦Code needs to compile. Other people will break your
code immediately.
◦Still can’t work concurrently

Completely Synchronous?

The Version Control Way

Take from the repository
Make your changes
Merge your work with the repository
No conflicts: Most merges are trivial

◦(i.e. nobody else was working)
◦Conflicts: Tools can help the merge process
◦(i.e. incorporate other peoples’ changes)

Merging is much easier than you think.

Copy, Modify, Merge

Subversion
◦Central repository
◦Still commonly used today

Git (we’ll use this)
◦Hottest today. Very good, but a bit advanced…
◦No central repository – everyone has the repo
◦Merging and branching is even easier

Mercurial, BitKeeper, Bazaar, SourceSafe,
ClearCase, CVS, RCS

Popular Version Control
Systems

Coordinated Changes are:
managed and agreed upon

“didA”…B.

chg1

..“didP”

chgN

weAgree!

Release1

“didQ”…S.

chg1

..“didZ”

chgN

weAgree!

Release2 etc.

clone
◦Create your working copy from the remote repository
◦Do this once, work from there

add
◦Stage current changes for next commit

commit
◦Incorporate your staged changes into your local copy of
remote repository

push
◦Take your local changes and “publish” them onto remote
repository

GIT Commands

Git has four distinct areas that your work
progresses through.

13

Working Staging Local Remote

This is your local working

directory where you do your

development work.

This is the shared remote

repository that you use to

synchronize your work with

the rest of the team's work.

This is your local copy of the shared

remote repository which may not

be in sync with the remote.

These are the changes that you

specified you want in your next

commit to the local repository.

Your local repository and working copy do not
automatically stay in sync with the remote.

14

Working Local Remote
fetch

A fetch synchronizes the

local repository with the

remote repository.

merge

A merge incorporates new

changes fetched to the local

repository into the current branch

that your working copy is on.

fetch mergepull

A merge may detect changes that can

not be automatically incorporated.

This is called a merge conflict.

A branch is an independent

stream of repository changes

which isolates work from the

rest of the repository.

When you make local changes, those changes
must pass through all four areas.

15

Working Staging Local Remote
pushcommitadd

You add to the staging area all

of your working copy changes

that you want to commit.

Then you commit those

changes to your local copy

of the repository.

Works

on files

Finally, you push the changes to

the remote repository.

The default behavior for git will not allow you to

push to the remote repository if your local

repository is not up-to-date with remote.

Getting in sync may create merge conflicts with

your local changes that you will have to fix.

tag
◦Mark current commit with a <unique name>
◦Helps formalize you’ve reached a milestone (e.g.
Release1.0)

merge
◦Incorporate changes into the current branch (e.g.
master)

(“optional”)

branch
◦Create an “independent” stream of changes which
isolates work from the rest of the repository

Commands (continued)

Merging happens a lot and usually goes well;
other times not so much.

• Every time you sync with the remote repository a
merge occurs.

• A merge conflict occurs when there is at least one
file with overlapping changes that can not be
automatically resolved.

17

To minimize the number of times when conflicts
will not resolve easily, follow several guidelines.

1. Keep code lines short; break up long calculations.

2. Keep commits small and focused.

3. Minimize stray edits.

4. If multiple developers are collaborating on a
feature, each developer should sync with the
remote feature branch regularly.

Merge in the remote feature branch and then push to it, if you have
changes.

5. If development of a feature is taking a long time,
back merge master to sync completed features
for this sprint into the feature branch.

18

Assuming you’ve already have a local working copy

Don’t touch your code first!!
◦First: fetch to synchronize with remote
◦Then: merge local copy to your working branch

(if any, resolve merge conflicts)
◦Commit your changes

Commit often!! Every 20 minutes or so.
Commit working code, preferably.
Make those commit comments matter! I read them. Your
teammates read them.
Make your commits logical, not just dumps of what you
did

◦Ready to share? Only push working code!

A Day in the Life

 Selected student will complete first instructions
before next class

 Everyone else must read instructions and be
ready for activity (you already checked you can login

to Github right?)

Ensure all team members understand the basic
commands

Activity will give you confidence

