Dependency Inversion and
Adapters



Back To The Temperature Sensor

Early in the WeatherStation constructor
KelvinTempSensor sensor = new KelvinTempSensor() ;
On the surface this looks exactly like Barometer:
.We create a concrete sensor object in the weather station.
.This limits weather station reusability with different sensors.

.SO0:

- Define an interface, say IKelvinTempSensor.

- Implement the interface for all real & simulated sensor classes.
Create the desired concrete sensor in main or other driver method.
- Inject this object into the WeatherStation constructor.

But there is more here than meets the eye!



Problems With The Temperature Sensor

.The interface represents an "odd" notion of what temperature looks like:
- Scaled integer from 0 to 655357
- Measures up to 655.35 °K?

- That's a weird upper bound - why is it there?

.The designers thought the problem was selecting an integrating the best
sensor.



Problems With The Temperature Sensor

.The interface represents an "odd" notion of what temperature looks like:
- Scaled integer from 0 to 655357
- Measures up to 655.35 °K?

- That's a weird upper bound - why is it there?

.The designers thought the problem was selecting an integrating the best
sensor.

.The designers were WRONG!

.The real problem is how to hide the details of specific sensor used from
the weather station.

All the weather station needs is a general value representing the
temperature in some reasonable form.



Design Caveats (Uncle Bob Martin)

-Woe is the designer who prematurely decides on a database, and then
finds that flat files would have been sufficient.

-Woe is the designer who prematurely decides upon a web-server, only
to find that all the team really needed was a simple socket interface.

-Woe is the team whose designers prematurely impose a framework
upon them, only to find that the framework provides powers they don't
need and adds constraints they can't live with.

.Blessed is the team whose designers have provided the means by
which all these decisions can be deferred until there is enough
iInformation to make them. [CDP!]

.Blessed is the team whose designers have so isolated them from slow
and resource hungry IO devices and frameworks that they can create
fast and lightweight test environments.

.Blessed is the team whose designers care about what really matters,
and defer those things that don't.



Dependency Inversion Principle

.Low-level components should depend on high-level components, not the
other way around.

-OR -

-High-level components should not depend on low-level components.
Both should depend on abstractions.

-Abstractions should not depend on details (of low level entities).
Details should depend on abstractions.

-OR -

-High-level components control the interface to low-level components.



Dependency Inversion & Temperature
Sensors

The WeatherStation decides on the interface it wants:

public interface ITempSensor {
double getCelsius() ;

}

Specific sensors must conform (somehow) to this interface

class SoondarSensor 1implements ITempSensor {
. Soondar specific code .
}

class EBestSensor 1implements ITempSensor {
EBest specific code .
}



What About Existing KelvinTempSensor?

Approach #1: Change the code
-Make the KelvinTempSensor class implement ITempSensor.

.Change the body of the code to convert from the scaled integer in
°K to a double precision number in °C.

.Replace the reading() method with getCelsius().



What About Existing KelvinTempSensor?

Approach #1: Change the code
-Make the KelvinTempSensor class implement ITempSensor.

.Change the body of the code to convert from the scaled integer in
°K to a double precision number in °C.

.Replace the reading() method with getCelsius().

Potential problems:

.Small changes here, but in general there would be many changes.

-We might not have the source code, only a precompiled .class or .jar
file.



What About Existing KelvinTempSensor?

Approach #1: Change the code
-Make the KelvinTempSensor class implement ITempSensor.

.Change the body of the code to convert from the scaled integer in
°K to a double precision number in °C.

.Replace the reading() method with getCelsius().

Potential problems:

.Small changes here, but in general there would be many changes.
-We might not have the source code, only a precompiled .class or .jar
file.

Approach #2: Create an Adapter.



Adapters

What are adapters for?
.Have an existing entity (2-prong outlet, temperature sensor class).

-Which does what is required (deliver A/C electricity, provides the
temperature).

.But in a way we can't use (no grounding, temperature in scaled Kelvin).
.S0 we create an adapter (3-prong adapter, temperature adapter class).

In software design, this is the goal of the Adapter Pattern.



Reasons for Software Adapters

Class of the object we at hand has:

.Different method names.

.Different return types or values.

.Different argument types or counts.
.Different partitioning of class responsibilities.

Usually a combination of the above.



Software Adapter UML

Crass Diagram

SEQUENCE DIAGRAM

imilarop()




Temperature Sensor Adapter

public interface ITempSensor {
public double getCelsius() ;

}

public class KTempAdapter implements ITempSensor {
private KelvinTempSensor kts = new KelvinTempSensor() ;

private K2C_CONVERT = -27315 ;

public double getCelsius() {
return (kts.reading() + K2C_CONVERT) / 100.0 ;

}
}

To use this in our application:

1.Create a KTempAdapter object in the Ul main method.

2.Inject this into the WeatherStation as a constructor argument.
3.The WeatherStation argument is, of course, of type ITempSensor.

4.Change WeatherStation code dependent on KelvinTempSensor to use what is
returned by the ITempSensor objects.



