
Dependency Inversion and 

Adapters



Back To The Temperature Sensor

Early in the WeatherStation constructor

KelvinTempSensor sensor = new KelvinTempSensor() ;

On the surface this looks exactly like Barometer:

●We create a concrete sensor object in the weather station.

●This limits weather station reusability with different sensors.

●So:

– Define an interface, say IKelvinTempSensor.

– Implement the interface for all real & simulated sensor classes.

– Create the desired concrete sensor in main or other driver method.

– Inject this object into the WeatherStation constructor.

But there is more here than meets the eye!



Problems With The Temperature Sensor

●The interface represents an "odd" notion of what temperature looks like:

– Scaled integer from 0 to 65535?

– Measures up to 655.35 °K?

– That's a weird upper bound - why is it there?

●The designers thought the problem was selecting an integrating the best 

sensor.



Problems With The Temperature Sensor

●The interface represents an "odd" notion of what temperature looks like:

– Scaled integer from 0 to 65535?

– Measures up to 655.35 °K?

– That's a weird upper bound - why is it there?

●The designers thought the problem was selecting an integrating the best 

sensor.

●The designers were WRONG!

●The real problem is how to hide the details of specific sensor used from 

the weather station.

●All the weather station needs is a general value representing the 

temperature in some reasonable form.



Design Caveats (Uncle Bob Martin)

●Woe is the designer who prematurely decides on a database, and then 

finds that flat files would have been sufficient.

●Woe is the designer who prematurely decides upon a web-server, only 

to find that all the team really needed was a simple socket interface.

●Woe is the team whose designers prematurely impose a framework 

upon them, only to find that the framework provides powers they don't 

need and adds constraints they can't live with.

●Blessed is the team whose designers have provided the means by 

which all these decisions can be deferred until there is enough 

information to make them. [CDP!]

●Blessed is the team whose designers have so isolated them from slow 

and resource hungry IO devices and frameworks that they can create 

fast and lightweight test environments.

●Blessed is the team whose designers care about what really matters, 

and defer those things that don't.



Dependency Inversion Principle

●Low-level components should depend on high-level components, not the 

other way around.

- OR -

●High-level components should not depend on low-level components.

Both should depend on abstractions.

●Abstractions should not depend on details (of low level entities).

Details should depend on abstractions.

- OR -

●High-level components control the interface to low-level components.



Dependency Inversion & Temperature

Sensors

The WeatherStation decides on the interface it wants:

public interface ITempSensor {

double getCelsius() ;

}

Specific sensors must conform (somehow) to this interface

class SoondarSensor implements ITempSensor {

. . . Soondar specific code . . . 

}

class EBestSensor implements ITempSensor {

. . . EBest specific code . . . 

}



What About Existing KelvinTempSensor?

Approach #1: Change the code

●Make the KelvinTempSensor class implement ITempSensor.

●Change the body of the code to convert from the scaled integer in

°K to a double precision number in °C.

●Replace the reading() method with getCelsius().



What About Existing KelvinTempSensor?

Approach #1: Change the code

●Make the KelvinTempSensor class implement ITempSensor.

●Change the body of the code to convert from the scaled integer in

°K to a double precision number in °C.

●Replace the reading() method with getCelsius().

Potential problems:

●Small changes here, but in general there would be many changes.

●We might not have the source code, only a precompiled .class or .jar 

file.



What About Existing KelvinTempSensor?

Approach #1: Change the code

●Make the KelvinTempSensor class implement ITempSensor.

●Change the body of the code to convert from the scaled integer in

°K to a double precision number in °C.

●Replace the reading() method with getCelsius().

Potential problems:

●Small changes here, but in general there would be many changes.

●We might not have the source code, only a precompiled .class or .jar 

file.

Approach #2: Create an Adapter.



Adapters

What are adapters for?

●Have an existing entity (2-prong outlet, temperature sensor class).

●Which does what is required (deliver A/C electricity, provides the 

temperature).

●But in a way we can't use (no grounding, temperature in scaled Kelvin).

●So we create an adapter (3-prong adapter, temperature adapter class).

In software design, this is the goal of the Adapter Pattern.



Reasons for Software Adapters

Class of the object we at hand has:

●Different method names.

●Different return types or values.

●Different argument types or counts.

●Different partitioning of class responsibilities.

Usually a combination of the above.



Software Adapter UML



Temperature Sensor Adapter
public interface ITempSensor {

public double getCelsius() ;

}

. . .

public class KTempAdapter implements ITempSensor {

private KelvinTempSensor kts = new KelvinTempSensor() ;

private K2C_CONVERT = -27315 ;

public double getCelsius() {

return (kts.reading() + K2C_CONVERT) / 100.0 ;

}

}

To use this in our application:

1.Create a KTempAdapter object in the UI main method.

2.Inject this into the WeatherStation as a constructor argument.

3.The WeatherStation argument is, of course, of type ITempSensor.

4.Change WeatherStation code dependent on KelvinTempSensor to use what is 

returned by the ITempSensor objects.


