
Program to Interface, Factories

and Injection

Program to an Interface,

Not an Implementation

Early in the WeatherStation constructor:

Barometer bar = new Barometer() ;

Why is this problematic:

●WeatherStation depends on a specific implementation of a

Barometer.

●In particular, here a simulated Barometer!

●Each different type of Barometer makes us change the

WeatherStation.

●Or jury-rig some sort of way of loading the "right" Barometer.

●Reduces the reusability of WeatherStation in different contexts.

Program to an Interface,

Not an Implementation

Somewhere in the WeatherStation :

If (intBarometerType == 1) {

barObj = new Barometer1() ;

}

If (intBarometerType == 2) {

barObj = new Barometer2() ;

}

Issues:

new keyword gets used/abused

Client is aware of all Barometer types

(need to recompile when you add a new type!)

P2I: Factories

Go ask someone else for what we need:

●Some other known class (static factories):

java.util.System:

public Console console() ;

– Get object to read and write to the application's console.

– How this is done is inherently system dependent.

– Different on Windows, Linux, Mac

P2I: Factories

Go ask someone else for what we need:

●Some other known class (static factories)

●Some other known object (dynamic factories)

java.util.Runtime:

Runtime rt = Runtime.getRuntime() ;

. . .

Process p = rt.exec("some system command") ;

– Processes are inherently system dependent.

– As is how to create one to execute a command.

Factory Method Pattern

Often we have related, parallel hierarchies.

Factory method uses an object in one hierarchy to retrieve an

appropriate object from the other hierarchy.

Factory Method Pattern

Often we have related, parallel hierarchies.

Factory method uses an object in one hierarchy to retrieve an

appropriate object from the other hierarchy.

Example: Java Collections and their Iterators.

Abstract Factory Method

Sometimes we have different implementations of a set of related objects.

Implementations are not interchangeable.

Example: Swing

●Swing provides system independent classes for system dependent UI

elements.

●That is, JButtons look like X-Windows buttons on Linux and Windows

buttons on Windows.

●Same from frames, text boxes, etc.

●Configure runtime with an object that returns the correct type of button,

frame, etc. for the system we run on.

Swing Windowing Abstract Factory

Barometer & Factory - 1

First, use an abstract barometer class:

public abstract class Barometer {

public static Barometer createBarometer() { ... }

abstract public double pressure() ;

}

Next, change the simulated barometer class and all other barometer

classes to

1.Have a different name, and

2.Extend the abstract class above

public class SimBarometer extends Barometer { ... }

public class RealBarometer extends Barometer { ... }

Barometer & Factory - 2

Change the factory createBarometer() method to return the desired

specific, concrete barometer object.

public static Barometer createBarometer() {

return new SimBarometer() ; // or something else

}

Inside the WeatherStation, use the factory to get the Barometer to

use:

public WeatherStation {

private final Barometer bar ;

public WeatherStation() {

bar = Barometer.createBarometer() ;

}

. . .

P2I: Factory Pattern Points

Factory Approach Advantages

●Decouple the class needing an object from the creation of a concrete

object.

●Always get compatible objects (esp. with Abstract Factory).

Factory Approach Disadvantages

●Still have to know where the factory is.

●Coupled to the factory class or object.

Can we decouple even more? Yes - dependency injection.

Dependency Inversion Principle (DIP)

●Low-level components should depend on high-level components, not the

other way around.

- OR -

●High-level components should not depend on low-level components.

Both should depend on abstractions.

●Abstractions should not depend on details (of low level entities).

Details should depend on abstractions.

- OR -

●High-level components control the interface to low-level components.

One use of DIP is through
dependency injection pattern

P2I: Dependency Injection Pattern

Dependency Injection - target object (e.g., WeatherStation) is given

the objects it needs (e.g., barometer and temperature sensor) from the

surrounding environment:

●Via constructor arguments.

●Via specific injection methods.

In fact, we've already seen this:

P2I: Dependency Injection Pattern

Dependency Injection - target object (here WeatherStation) is given the

object it needs from the surrounding environment:

●Via constructor arguments.

●Via specific injection methods.

In fact, we've already seen this:

public class TextUI implements Observer {

private final WeatherStation station ;

public TextUI(WeatherStation station) {

this.station = station ;

this.station.addObserver(this) ;

}

Anything compatible with
WeatherStation can be
substituted.

Dependency Injection & Barometer - 1

First, define a barometer interface:

public interface Barometer {

public double pressure() ;

}

Next, change the simulated barometer class and all other barometer

classes to

1.Have a different name, and

2.Implement the interface above

public class SimBarometer implements Barometer { ... }

public class RealBarometer implements Barometer { ... }

Dependency Injection & Barometer - 2

Change the public static void main() method to inject whichever

concrete barometer we want:

public static void main(String[] args) {

. . .

WeatherStation ws =

new WeatherStation(new SimBarometer());

}

In the WeatherStation constructor, save the injected Barometer:

public WeatherStation {

private final Barometer bar ;

public WeatherStation(Barometer bar) {

this.bar = bar ;

}

. . .

Now To The Temperature Sensor

Early in the WeatherStation constructor

KelvinTempSensor sensor = new KelvinTempSensor() ;

On the surface this looks exactly like Barometer:

●We create a concrete sensor object in the weather station.

●This limits weather station reusability with different sensors.

●So:

– Define an interface, say IKelvinTempSensor.

– Implement the interface for all real & simulated sensor classes.

– Create the desired concrete sensor in main or other driver method.

– Inject this object into the WeatherStation constructor.

But there is more here than meets the eye!

Problems With The Temperature Sensor

●The interface represents an "odd" notion of what temperature looks like:

– Scaled integer from 0 to 65535?

– Measures up to 655.35 °K?

– That's a weird upper bound - why is it there?

●The designers thought the problem was selecting an integrating the best

sensor.

Problems With The Temperature Sensor

●The interface represents an "odd" notion of what temperature looks like:

– Scaled integer from 0 to 65535?

– Measures up to 655.35 °K?

– That's a weird upper bound - why is it there?

●The designers thought the problem was selecting an integrating the best

sensor.

●The designers were WRONG!

●The real problem is how to hide the details of specific sensor used from

the weather station.

●All the weather station needs is a general value representing the

temperature in some reasonable form.

Design Caveats (Uncle Bob Martin)

●Woe is the designer who prematurely decides on a database, and then

finds that flat files would have been sufficient.

●Woe is the designer who prematurely decides upon a web-server, only

to find that all the team really needed was a simple socket interface.

●Woe is the team whose designers prematurely impose a framework

upon them, only to find that the framework provides powers they don't

need and adds constraints they can't live with.

●Blessed is the team whose designers have provided the means by

which all these decisions can be deferred until there is enough

information to make them.

●Blessed is the team whose designers have so isolated them from slow

and resource hungry IO devices and frameworks that they can create

fast and lightweight test environments.

●Blessed is the team whose designers care about what really matters and

defer those things that don't.

