SWEN 383 Software Design Principles & Patterns
The Composite Pattern

But first...

Software Engineering
eeeeeeeeeeeeeeeeee

SWEN 383 Software Design Principles & Patterns
The Composite Pattern

Client

—

<<abstract>>
Component

*

Operation()
Add(Component)
Remove(Component)
GetChild(int)

children

parent

¢
i]
o8 =
- N
-0 =
8z ©®
=z
R
2% 3
"
°F o
s

=

o

SWEN 383 Software Design Principles & Patterns
The Composite Pattern

<<interface>> Component will typically
IComponent lllllllllllllllllllllllllllllllll ’ be an Interface Or an
abstract class
Operation() *
Add(Component) :
Remove(Component) children
GetChild(int)

i

Operation() { N\
for (child in children) {
child.Operation();

}

SWEN 383 Software Design Principles & Patterns
The Composite Pattern

<<abstract>> Component will typically
Component lllllllllllllllllllllllllllllllll ’ be an Interface Or an
abstract class
Operation() *
Add(Component) :
Remove(Component) children
GetChild(int)

Operation() { N\
for (child in children) {
child.Operation();

}

Composite Object Diagram

Composite Sequence Diagram

[client] [cnmpnsitel] [composite2] [composite3] [leafl] [leaf2] [leaf3] [leafd

|

| | | | | | | |
o ~L] | | | | | |
s wl b | | |
| | | |
| | | |
T — 0 | |
A 42pQ A A |
|) | | | .C:] |
o A Op(} A
i ‘ T .
| | | | |
- T | | | | | |

— —_—— _——___—_—_—__——1 &
1821

o

T -

e g

08 %
8% 3
e =2
g% 3
S m
°5 @
o4 3
ZF o
-]

g =

[

Composite Class Example

<<ahstract>>
Drawable

move(double dx, double dy)

rotate(double angle)
resize(double percent)

'y §

group(Collection<DrawingElement> set}
ungroup()

—

contents

2\

Software Engineering

Rochester Institute
of Technology

Composite Object Example

Software Engineering

Composite Sequence Example

SEQUENCE DIAGRAM (RETURNS NOT SHOWN)

] [groupl] [aroup?2] [elligsel] [rectanglel] [rectangleE] [texthuxl] [ellipsez]
I | | I | |
| I I | | | |
move(} I |] | I
™ move() I
T ’[__'_] | I I I
move() I | I | |
T T | | I
move() I\ 1 | |
move() move() | | [] | |
A A A 'Cb |
move() l l J‘ T |
| | | —)
_ | | | | |
I | I ! ' I

Discussion Questions (1 of 2)

Consider the two variants on the Composite pattern below:

/-

<<abstract>>

children:

operation()

addComponent(c : Component)
deleteComponent(c: Component)
getChild(int n) : Component

Leaf

AN

Composite

operation()

operation()

addComponent(c : Component)
deleteComponent(c: Component)
getChild(int n) : Component

<<abstract>>
Component
chlldren—~
aperatlon()
Leaf Composite
operation() operation() >

addComponent(c : Component)
deleteComponent(c: Component)
getChild(int n) : Component

What are the relative advantages and disadvantages of each approach?

e
P

= L ::
A S

delete(*)

Composite isComposite() {...}
- returns null for anything but Composites

- returns this for Composites [-\
ft Engi

Software Engineering
¥

Discussion Questions (2 of 2)

Suppose we have several Composites.
« What would be the advantages and disadvantages of allowing
Composites to share children?
« How might this complicate implementation?
How might Composite be used create an internal object
representation of an HTML page?
In the Composite designs we've shown so far, navigation is
unidirectional (from Composite to the Components it contains).
« What would be an advantage and a disadvantage to having a reference
to the containing Composite in each Component?
« What about the case where Composites can share Components?

Software Engineering
Rochester Institute
of Technology

