
Introduction 

• Model–View–controller (MVC) is a software 

architecture pattern which separates the 

representation of information from the user's 

interaction with it .

• First used in the Smalltalk-80 framework

– Used in making Apple interfaces (Lisa and 

Macintosh



The MVC model defines web

applications with 3 logic 

layers:

The business layer (Model 

logic)

The display layer (View logic)

The input control (Controller 

logic)

Parts of MVC



Model 

• The model is responsible for managing the data 
of the application. 

• It responds to the request from the view and it 
also responds to instructions from the controller 
to update itself

• The Model represents the application core (for 
instance a list of database records). 

• It is also called the domain layer



View 

• The View displays the data. 

• A view requests information from the 

model, that it needs to generate an output 

representation. 

• MVC is often seen in web applications, 

where the view is the HTML page.



Controller 

• The Controller is the part of the 

application that handles user interaction.

• Typically controllers read data from a view, 

control user input, and send input data to 

the model. 

• It handles the input, typically user actions 

and may invoke changes on the model 

and view.





Workflow in MVC

Though MVC comes in different flavours, the 
control flow generally works as follows:

1. The user interacts with the user interface in 
some way (e.g., user presses a button)

2. A controller handles the input event from the 
user interface, often via a registered handler or 
callback.

3. The controller accesses the model, possibly 
updating it in a way appropriate to the user’s

action (e.g., controller updates user’s shopping 
cart). 



4. A view uses the model to generate an 

appropriate user interface (e.g., view 

produces a screen listing the shopping cart 

contents). 

The view gets its own data from the model. 

The model has no direct knowledge of the 

view. 

5. The user interface waits for further user 

interactions, which begins the cycle anew.

Workflow in MVC



Dependence hierarchy

• There is usually a kind of hierarchy in the 

MVC pattern. 

• The Model knows only about itself.

• That is, the source code of the Model has 

no references to either the View or 

Controller. 



• The View however, knows about the 

Model. It will poll the Model about the 

state, to know what to display. 

• That way, the View can display something 

that is based on what the Model has done.

• But the View knows nothing about the 

Controller. 

• The Controller knows about both the 

Model and the View. 

Dependence hierarchy



• Take an example from a game: If you click on 

the "fire" button on the mouse, the Controller 

knows what fire function in the Model to call.

• If you press the button for switching between 

first and third person, the Controller knows what 

function in the View to call to request the display 

change. 

Dependence hierarchy



Why a dependence hierarchy?

• The reason to keep it this way is to 
minimize dependencies. 

• No matter how the View class is modified, 
the Model will still work.

• Even if the system is moved from a 
desktop operating system to a smart 
phone, the Model can be moved with no 
changes. 

• But the View probably needs to be 
updated, as will the Controller. 



Use in web applications

• Although originally developed for personal 
computing, Model View Controller has been 
widely adapted as an architecture for World Wide 
Web applications in all major programming 
languages.

• Several commercial and 
noncommercial application frameworks have been 
created that enforce the pattern. 

• These frameworks vary in their interpretations, 
mainly in the way that the MVC responsibilities 
are divided between the client and server


