
Command

com·mand

/kəˈmand/

noun

1. an instruction or signal that causes a computer to

perform one of its basic function

2

Command Intent

Encapsulate a request as an object, thereby

letting you parameterize clients with

different request, queue or log requests, and

support undoable operations.

(Behavioral)

4

In a typical application, how many different ways
are available to the user to invoke an operation?

5

A Command object can decouple invocation from
knowledge of execution of the operation.

Invokers

Request

Specifics of what to do

when button “clicked” are

known to the application

using the button

(receiver)

Targets

6

A Command object can decouple invocation from
knowledge of execution of the operation.

ReceiversInvokers

Command Object

Command Object

Command Object

Execute

Execute

Execute

have Command objects

Commands know the

targets and how to do

the operation.

7

Participants

▪ Command
• Interface for executing every operation

▪ Concrete Command
• Implements operation

• Binds receiver and action

▪ Client
• Creates Concrete Command

• Determines Receiver

▪ Invoker
• Requests command to execute operation

▪ Receiver
• Performs the operations needed

8

Each command knows how to execute the
operation and where to execute it.

Client Invoker Command

execute()

Receiver

action()

ConcreteCommand

execute()

state

execute() {

receiver->action();

}

receive

Creation of all the command objects

9

Each command knows how to execute the
operation and where to execute it.

Client Invoker Command

execute()

Receiver

action()

ConcreteCommand

execute()

state

execute() {

receiver->action();

}

receive

Creation of all the command objects

10

Encapsulating how to perform an operation
allows separation of concerns in space and time.

▪ Invocation (view) is decoupled from execution

(control/model).

▪ Execution can happen at a different time than

invocation.
• How can this support undo/redo?

▪ You can create sequences of commands for

later execution.
• How can this support macro commands?

• What other design pattern would you use?

11

There are several design choices that you have.

▪ How smart is the command object?
• Only binds command to receiver and action

• Performs the operation itself

▪ When is a command instantiated?
• Prior to invocation

• Upon invocation

▪ When is the receiver bound to the command?
• When command is instantiated

• When command is invoked

12

Command Pattern (Example)

13

Example – Wiring Electrical Switches

A switch has flipUp() and flipDown()

operations in its interface. Switch is

called the invoker because it invokes

the execute operation in the command

interface.

The concrete command,

LightOnCommand, implements the

execute operation of the command

interface. It has the knowledge to call

the appropriate receiver object's

operation

The client creates a command object.

The client does a StoreCommand() to

store the command in the Invoker

Later… the invoker will execute the

command (i.e. when the switch is

flipped in this example)

All the invoker needs to know is that

some stored action is executed

14

Java Implementation – Receiver Classes

class Fan {

public void startRotate() {

System.out.println("Fan is rotating");

}

public void stopRotate() {

System.out.println("Fan is not rotating");

}

}

class Light {

public void turnOn() {

System.out.println("Light is on ");

}

public void turnOff() {

System.out.println("Light is off");

}

}

15

Command Interface & Concrete Commands

public interface Command {
public abstract void execute ();

}

class LightOnCommand implements Command {
private Light myLight;
public LightOnCommand (Light L) {myLight = L;}
public void execute() { myLight.turnOn(); }

}

class LightOffCommand implements Command {
private Light myLight;
public LightOffCommand (Light L) {myLight = L;}
public void execute() { myLight.turnOff(); }

}

class FanOnCommand implements Command {
private Fan myFan;
public FanOnCommand (Fan F) { myFan = F; }
public void execute() { myFan.startRotate(); }

}

class FanOffCommand implements Command {
private Fan myFan;
public FanOffCommand (Fan F) { myFan = F; }
public void execute() { myFan.stopRotate(); }

}

16

Invoker Class

class Switch {

// concrete Commands registered with this invoker during

// instantiation

private Command UpCommand, DownCommand;

public Switch(Command Up, Command Down) {

// wired at instantiation

UpCommand = Up;

DownCommand = Down;

}

// invoker calls back concrete Command, which executes

// the Command on the receiver

void flipUp() {

UpCommand.execute () ;

}

void flipDown() {

DownCommand.execute ();

}

}

18

public class TestCommand {

public static void main(String[] args) {

// Create receivers

Light testLight = new Light();

Fan testFan = new Fan();

// Create commands

LightOnCommand testLOC = new LightOnCommand(testLight);

LightOffCommand testLFC = new LightOffCommand(testLight);

FanOnCommand foc = new FanOnCommand(testFan);

FanOffCommand ffc = new FanOffCommand(testFan);

// Create invokers and store commands

Switch testSwitch1 = new Switch(testLOC,testLFC);

Switch testSwitch2 = new Switch(foc,ffc);

// Have invokers execute commands

testSwitch1.flipUp(); // light on

testSwitch1.flipDown(); // light off

testSwitch2.flipUp(); // fan on

testSwitch2.flipDown(); // fan off

}

}

Simple Client does the wiring and testing

Only the concrete command objects

knows of the receiver objects

Wiring at instantiation. The

invoker only knows about the

command objects and running

their execute() method

