
Anti-patterns

2

What is an Anti-Pattern?

A pattern is a named, proven approach to solving a

technical problem in a context with generally positive

consequences..

An anti-pattern is a named, common approach to

solving a technical problem with decidedly negative

consequences. Anti-patterns are like code smells on

steroids:

1.Generally at a higher level of abstraction than smells.

2.Generally of more strategic significance.

3.Generally have wider organizational impact.

Other examples: non-optimal solution; incorrect use

of pattern or use of pattern in the wrong context

3

Key Anti-Pattern References

www.antipatterns.com

www.sourcemaking.com/antipatterns

http://www.antipatterns.co/
http://www.sourcemaking.com/antipatterns

4

Anti-Pattern Categories

Software Development Anti-Patterns

• Relate to maintaining solid code structure.

• Solution: targeted refactoring.

Software Architecture Anti-Patterns

• System and enterprise-level of application

structure.

• Solution: Make architecture explicit (architecture

driven development).

Project Management Anti-Patterns

• Communications and personal (team) issues.

• Solution: Varied.

5

Software Development 1 – The Blob

AKA: Winnebago; The God Class

Anecdotal Evidence:

“This is the class that is the heart of our

architecture.”

Root Causes:

Sloth, Haste, Unfamiliarity With OO Technology

Solution: Refactor Responsibilities

• Extract Class

• Extract Method

• Move Method

6

Software Development 2 – Spaghetti Code

AKA: Winnebago; The God Class

Anecdotal Evidence:

“Ugh! What a mess!”

“It’s easier to rewrite this than to attempt to modify it.”

Root Causes:

Ignorance, Sloth, Inexperienced developers.

Solution: Refactor Responsibilities

• Refactoring.

• General cleanup.

7

Software Development 3 – Golden Hammer

AKA: Old Yeller, Head-in-the-sand

Anecdotal Evidence:

“I have a hammer; everything else is a nail.”

“Our database is our architecture.”

“Maybe Excel macros weren’t up to the job.”

Root Causes:

Ignorance, Pride, Narrow-mindedness.

Solution: Refactor Responsibilities

• Commitment to exploring different technologies.

• Developer training.

8

Ooops, server is not longer

supported – but save the code,

we’ll migrate it to Javascript

Project started – this one is Strategic and HOT!

Native API – single server commitment

Lead Engineer left, New Lead had

<<better>> approach, but nervous

about deleting stuff until he was

more familiar with the code

Javascript is king, migration is a

headache (do only what “we need”)

New guys know Angular!

Project oooozing along –

Did you hear about Vue?

… KIR or please RIP

Angular 2.0 – parallel development

Developers quit for cozier job

11

Software Development 4 – Lava Flow

AKA: Dead Code, Ruins of Troy

Anecdotal Evidence:

"Oh that! Well Ray and Emil (they're no longer with the

company) wrote that routine back when Jim (who left last

month) was trying a workaround for Irene's input processing

code (she's in another department now, too). I don't think it's

used anywhere now, but I'm not really sure. Irene didn't

really document it very clearly, so we figured we would just

leave well enough alone for now. After all, the bloomin' thing

works doesn't it?!“

Root Causes:

Sloth, FUD, failure to refactor, research to production.

Solution:

• Refactor

• Careful excision and testing.

12

Project management AntiPatterns

▪ Blowhard Jamboree

▪ Death By Planning

▪ Intellectual Violence

▪ Fire Drill

▪ Analysis Paralysis

▪ E-mail Is Dangerous

13

Remember much of it is up to you!

