
R. Kuehl/J. Scott Hawker p. 1
R I T

Software Engineering

Use Case Modeling Techniques

From Universal Modeling Language (UML)

R. Kuehl/J. Scott Hawker p. 2
R I T

Software Engineering

Use Cases

 Interaction between a user and a system

 A complete and meaningful use

 Focus on value – how the system will be used to
satisfy a specific user goal

 Observable and testable functionality - “black
box” view of the system

 The first system functional decomposition

 All use cases = {all things the system must do}

 Understand the big picture

R. Kuehl/J. Scott Hawker p. 3
R I T

Software Engineering

Use-Case Modeling Phases

Three phases of requirements analysis:

1. Model the user roles – detailed actor descriptions

 Identify user goals for system interaction

2. Model (specify) requirements as use cases

 Use case diagrams – for context and reference

 Use case descriptions

3. Model use-case realizations

 An interaction of objects that realize the requirements

 Class diagrams and object interaction diagrams

 (Also known as robustness analysis, use case analysis, task
modeling, or scripting)

R. Kuehl/J. Scott Hawker p. 4
R I T

Software Engineering

UML Use-Case Modeling

 An actor represents anything that interacts
with the system

 A use case is a set of system actions that yields
an observable result of value to a particular
actor

Actor

UseCase

UseCase

Actor

<<Actor>>

People, external systems, devices

R. Kuehl/J. Scott Hawker p. 5
R I T

Software Engineering

Use-Case Diagram

 A use-case diagram shows relationships
between actors and use cases

 Relationships: “communicates with” (exchanges
data, signals, events)

View Grades

Student

Login

Register for Courses

CourseCatalog

<<Actor>>

System context

R. Kuehl/J. Scott Hawker p. 6
R I T

Software Engineering

Use Case Descriptions

 For each use case describe functional steps in sufficient
detail to …
 Enable (or represent) requirement specification

 Begin early design work

 Achieve stakeholder and user understanding and approval

 The details …
 Name and description

 Actors

 Primary flow of events (as related stories)

 Secondary alternative and/or exception flow of events

 System preconditions

 System post conditions

 Supplemental information – non-functional requirements

R. Kuehl/J. Scott Hawker p. 7
R I T

Software Engineering

“Why Use Cases at All?”

 A good compromise – use cases are semi-formal,
structured, but understandable stories (people like
stories)

 Use cases add value to analysis
 At first as a succinct outline of mainline features and capabilities

(get your head around the functionality)

 Later a basis for innovation, extension, revision of requirements

 Address exceptions – a large source of system
complexity

 Start functional decomposition that transitions to
requirement specifications and early design

 Good basis for pursuing related project information
– estimates, plans, user interface design, software
design, testing

R. Kuehl/J. Scott Hawker p. 8
R I T

Software Engineering

But Use Cases Have Limitations

 Too much detail – can be hard to work with

 Developers need use case supplemental
requirements to design

 Ancillary functionality such as system administration

 Non functional quality requirements and business rules

 Functional decomposition guidance for design
has limits

 May not be as effective for non-user interactive
systems

 Concurrent applications, batch processing, data
warehousing, computational intensive, etc.

R. Kuehl/J. Scott Hawker p. 9
R I T

Software Engineering

Use Case Example - ATM

9

:

Bank Customer

Withdraw

Cash

Deposit

Funds

Transfer

Funds

Refill

Machine

Bank

Maintenance Person

Cashier

R. Kuehl/J. Scott Hawker p. 10
R I T

Software Engineering

ATM Model: Withdraw Cash Use Case

1 Brief Description
This use case describes how the Bank Customer uses the ATM to withdraw money his/her
bank account.

2 Actors
2.1 Bank Customer
2.2 Bank

3 Preconditions
There is an active network connection to the Bank.
The ATM has cash available.

4 Basic Flow of Events
1. The use case begins when Bank Customer inserts their Bank Card.
2. Use Case: Validate User is performed.
3. The ATM displays the different alternatives that are available on this unit. [See Supporting
Requirement SR-xxx for list of alternatives]. In this case the Bank Customer always selects
“Withdraw Cash”.
4. The ATM prompts for an account. See Supporting Requirement SR-yyy for account types
that shall be supported.
5. The Bank Customer selects an account.
6. The ATM prompts for an amount.
7. The Bank Customer enters an amount.
8. Card ID, PIN, amount and account is sent to Bank as a transaction. The Bank Consortium
replies with a go/no go reply telling if the transaction is ok.
9. Then money is dispensed
10. The Bank Card is returned.
11. The receipt is printed
12. The use case ends successfully

R. Kuehl/J. Scott Hawker p. 11
R I T

Software Engineering

ATM Model: Withdraw Cash Use Case (2)

5 Alternative Flows

5.1 Invalid User

If in step 2 of the basic flow Bank Customer the use case: Validate User does not

complete successfully, then

1. the use case ends with a failure condition

5.2 Wrong account

If in step 8 of the basic flow the account selected by the Bank Customer is not

associated with this bank card, then

1. Tthe ATM shall display the message “Invalid Account – please try again”

2. The use case resumes at step 4

.

.

.

7 Post-conditions

7.1 Successful Completion

The user has received their cash and the internal logs have been updated.

7.2 Failure Condition

The logs have been updated accordingly.

R. Kuehl/J. Scott Hawker p. 12
R I T

Software Engineering

Developing the Use Case Model

 Steps

 Find Actors

 Find Use Cases

 Describe How Actors and Use Cases Interact

 Present the Use-Case Model in Use-Case
Diagrams

 Package Actors and Use Cases

 Develop a Survey of the Use-Case Model

 Evaluate Your Results

R. Kuehl/J. Scott Hawker p. 13
R I T

Software Engineering

Step: Find Actors

 Actor: Define a coherent set of user roles for system

interaction

 An individual or an external system

 Primary users for main functions

 Secondary users for ancillary functions

 Name the actor to clearly describe the actor’s role

 Briefly describe the actor

 Responsibilities and goals for what the system needs to

accomplish

 Capabilities (skills, environment, etc.) relevant to the system

R. Kuehl/J. Scott Hawker p. 14
R I T

Software Engineering

Step: Find Use Cases

 For each actor (human and not)

 What are the primary tasks the actor wants to perform?

 E.g., create, retrieve, update, delete data

 What are the secondary tasks the actor wants to
perform?

 E.g., system maintenance tasks

 What are the actor trigger events to initiate action
between actors and the system?

 Logically coherent tasks are use case candidates

R. Kuehl/J. Scott Hawker p. 15
R I T

Software Engineering

Step: Find Use Cases (cont)

 Name the use case: a verb phrase that represents
the user’s goal

 Briefly describe the purpose of the use case

 Outline the basic and alternative flow of events –
details follow

 Collect additional (non-functional) requirements as
supplementary specifications

 Iterate to add, remove, combine, and divide the use
cases

R. Kuehl/J. Scott Hawker p. 16
R I T

Software Engineering

Step: Describe How Actors and Use Cases Interact

 Establish which actors will interact with each use case

 For each actor-and-use-case pair

 Define, at the most, one communicates-association

 The flow of events and data to support the tasks

 The communicates-association navigation is bidirectional

 Briefly describe each communicates-association

R. Kuehl/J. Scott Hawker p. 17
R I T

Software Engineering

Step: Present the Use-Case Model

in Use Case Diagrams

 Illustrate the relationships among use cases and
actors, as well as among related use cases in
diagrams

Rent

Bike

Return

Bike

Manage

Bikes

Report

Lost Bike

Manage

Shops

Handle

Payments

Monitor

Rentals

Bike Rider

Bike Store Owner

Law Enforcement

Bike Rental

System

Customer

Payment Processing

System

<<Extends>>

R. Kuehl/J. Scott Hawker p. 18
R I T

Software Engineering

Step: Package Use Cases and Actors

 If the number of actors or use cases becomes too great,
divide them into use-case packages
 A collection of functionally related use cases and actors – think

functional sub-system
 Easier to understand and maintain the model
 Future architectural implications

 Packaging alternatives:
 Actor to use case relationships; 1:N or N:1

 Use case relationships:

 Manage common information

 Work or data flow sequences

 Most important

 Hierarchies (but breath before depth)

 Other criteria such as release packaging

R. Kuehl/J. Scott Hawker p. 19
R I T

Software Engineering

Use Case Package Example

There should be a use case diagram for each package

R. Kuehl/J. Scott Hawker p. 20
R I T

Software Engineering

Step: Develop a Survey of the Use-Case Model

 Write a descriptive summary (an abstract)

 The primary actors and their roles

 The primary use cases of the system (the reason the system
is built)

 Primary system workflow sequences

 Package/sub-package hierarchies

 System boundaries – What is in the system and external
dependencies

 The system's environment, for example, target platforms and
existing software

 Non-functional requirements not handled by the use-case
model – quality attributes

R. Kuehl/J. Scott Hawker p. 21
R I T

Software Engineering

Step: Evaluate Use-Case Model

 Are all essential actors and use cases
identified?

 Identify unnecessary actors or use cases

 Provide little or no value

 Use cases that should be combined for
greater value

 The flow of actor-use case interaction is
reasonably correct, complete, and
understandable at this stage

 The survey description of the use-case model
makes it understandable

R. Kuehl/J. Scott Hawker p. 22
R I T

Software Engineering

Detail a Use Case

R. Kuehl/J. Scott Hawker p. 23
R I T

Software Engineering

Detail Each Use Case

 Describe functional steps in sufficient detail to …
 Enable requirement specification

 Early design work to begin

 Achieve stakeholder and user understanding and
approval

 Steps
 Structure and detail the flow of events

 Describe preconditions

 Describe post conditions

 Describe any special requirements of the use case

 Describe any communication protocols [optional]

 Evaluate the results

R. Kuehl/J. Scott Hawker p. 24
R I T

Software Engineering

Basic Use Case Template

 Unique identifier

 [Metadata – e.g., author, priority, etc.]

 Name

 Actors

 Description

 Preconditions

 Post conditions

 Primary scenario of events

 Secondary (alternative and exceptional scenarios)

 Special requirements

 [Extension points]

R. Kuehl/J. Scott Hawker p. 25
R I T

Software Engineering

Style Considerations

 Choose the template structure and language
style ahead of time

 Many template styles – be consistent and
complete

 Describe the flow of events, not just the use
case's functionality or purpose.

 Self containment - avoid references to other
actors and use cases

 Do not describe the details of the user interface

 Do not discuss implementation technology

R. Kuehl/J. Scott Hawker p. 26
R I T

Software Engineering

Style Considerations (cont)

 Express in natural language, avoid code-like
constructs
- Simple, active action steps

- Concise and explicit well written sentences

- Minimalist, essential detail

 Make it understandable for customers, users,
and developers
 Use domain terminology , not technology or

methodology terminology; add a glossary

 Avoid the use of methodology-specific terminology,
such as “use case”, “actor”, and “signal”

 Avoid vague terminology such as "for example", "etc.
" and “the information“

R. Kuehl/J. Scott Hawker p. 27
R I T

Software Engineering

Style Considerations (cont)

 Breadth-Before-Depth – work on an overview of
use cases first and then progressively add detail

 Quitting-Time (when are we done?) – use cases
are complete (versus goals) and achieve review
approval

 Find the right user goal level; rule of thumb 5-10
steps; goal granularity

 Find the right balance for the number of use
cases

 Rule of thumb - no more than two dozen use cases

 Partition larger systems into packages

R. Kuehl/J. Scott Hawker p. 28
R I T

Software Engineering

Step: Detail the Flow of Events of a Use Case

 How and when the use case starts – the trigger event
 Trigger – the actor, the system, time

 How and when the use case terminates – success and
failure

 How the actors and the system interact
 Describe what the use case does for each actor action:

“When the user does …, the system does ….”

 Describe what the use case does for each system action:

“When the system does …, the user does ….”

 Data exchange between actors and use cases

 Information storage and retrieval

R. Kuehl/J. Scott Hawker p. 29
R I T

Software Engineering

Step: Detail the Flow of Events of a Use Case
(Continued)

 Structure the flow of events: main scenario plus
alternative flows

 Alternatives - branches in behavior from the main
scenario due to some condition (extensions)

 Alternative flows due to user or system action

 Exception conditions

 Where the most interesting system requirements are
found

R. Kuehl/J. Scott Hawker p. 30
R I T

Software Engineering

Step: Detail the Flow of Events of a Use Case
(Continued)

 Think of an alternative workflow as its own
stripped down use case

 Starting condition

 Sequence of action steps

 Completion state that ends in goal success or failure

 Avoid duplicating main flow steps in alternative
flows

 Reference main flow step branch

 Identify main flow return step or termination

R. Kuehl/J. Scott Hawker p. 31
R I T

Software Engineering

Structure the Flow of Events of the Use Case

Precondition and trigger event

Main Success Scenario (Actors Primary Goal)

M1

M2

.

.

.

MN

Alternative Flow of Events

(Optional “extension”, exception)
A1

A2

.

.

.

AN

Ends in success or failure

Ends in success or failure

Identify the branch location

and start condition

S1

S2

.

.

.

SN

Atomic flows – all or none,

always move forward

[Avoid branches, loops, parallelism]

Sequence of events

R. Kuehl/J. Scott Hawker p. 32
R I T

Software Engineering

Preconditions and Post Conditions

 A precondition is the state of
the system required before the
use case can be started

 A post condition is the state
the system can be in after the
use case has ended

 Identifying post conditions can
help describe use cases
themselves

 First define what the use
case is supposed to
achieve, the post condition

 Then describe how to reach
this condition (the flow of
events needed)

R. Kuehl/J. Scott Hawker p. 33
R I T

Software Engineering

Step: Describe Preconditions of the Use Case

 System state required to start the use case

 It is not the trigger event that starts the use case

 Avoid describing prior incidental activities that may have
happened

 Pre- or post condition states should be observable by
the user

 A precondition applies to the entire use case, not
only one sub flow

 (Although you can define preconditions and post
conditions at the sub flow level)

R. Kuehl/J. Scott Hawker p. 34
R I T

Software Engineering

Step: Describe Post Conditions of the Use Case

 Possible system states at the end of the use case

 Post conditions can also state system actions
performed at the end of the use case

 Post conditions should be true regardless of what
occurred in the use case

 Cover use case exceptions in the post condition
description

R. Kuehl/J. Scott Hawker p. 35
R I T

Software Engineering

Sequencing Use Cases with Pre/Post Conditions

 Best practice says you should not use pre-
and post conditions to create a dependency
sequence of use cases

 The sequentially dependent use cases should
be combined into a single use case

 Possible exceptions:
 When a common “sub-use-case” is factored out

 For example, a “Log In” use case

 Complexity – the combined use case is too large
but consider sub flows

R. Kuehl/J. Scott Hawker p. 36
R I T

Software Engineering

Step: Describe the Special

Requirements of the Use Case

 Related requirements not considered in the use
case scenarios

 Described in the Survey Description of the use
case

 Such requirements are likely to be nonfunctional
quality requirements or design constraints

 (Also called supplemental requirements)

R. Kuehl/J. Scott Hawker p. 37
R I T

Software Engineering

Step: Describe Communication Protocols
[Optional]

 Describe the “applications layer” communication
protocol if the actor is another system or
external hardware

 Specify if some existing protocol (perhaps a
standardized one) is to be used

 If the protocol is new, it will be fully described in
design

 The protocol may be expressed as the message
interaction through an established application
programming interface (API)

R. Kuehl/J. Scott Hawker p. 38
R I T

Software Engineering

Structure the Use Case Model

Decompose the model to enhance

understandability and maintainability

R. Kuehl/J. Scott Hawker p. 39
R I T

Software Engineering

Structuring the Use-Case Model

 Factor use case behavior into more abstract use
cases

 Identify common, optional, exceptional, or deferred
out of scope scenarios

 Possible relationships

 Include-Relationships Between Use Cases

 Extend-Relationships Between Use Cases

 Generalizations Between Use Cases

 Generalizations Between Actors

 Best performed after you have made your first
attempts at a use-case model

R. Kuehl/J. Scott Hawker p. 40
R I T

Software Engineering

Include-Relationships

The include-relationship exists
between a base use case and
subordinates

ATM

System

Use the include-relationship to factor

out behavior:
─ Subordinate to the primary purpose

of the base use case

─ Common for two or more use cases

─ (~ library module in programming)

R. Kuehl/J. Scott Hawker p. 41
R I T

Software Engineering

Include-Relationships

 The base use case owns the relationship to the
inclusion use case

 It depends on the behavior of the included use case

 Refer to the included use case in the step where the
inclusion is inserted

 Only the base use case knows about the inclusion use
case

 No inclusion use case knows what base use cases
include it

 An inclusion use case has a communication-
association to an actor only if its behavior
explicitly involves interaction with an actor

R. Kuehl/J. Scott Hawker p. 42
R I T

Software Engineering

Extend-Relationships

Extend-relationships branch
behavior from the use case main
scenario due to some condition
into sub use cases

Use case extensions made into
separate use cases
 Used in several places in the base use case

 Reduce base use case complexity to
improve readability

R. Kuehl/J. Scott Hawker p. 43
R I T

Software Engineering

Extend-Relationships

 Use extensions to:

 Show use case behavior that is optional or conditional from
the primary use case purpose

 Primary flow is “interrupted”

 Alternative flows due to user or system action

 Flows executed only under certain (sometimes
exceptional) conditions

 Allow new extending behavior to be added over time without
impacting the base use case

 The extension is conditional, its execution is
dependent on base use case flow

 Only the base and extending use cases knows of the
relationship between the two use cases

R. Kuehl/J. Scott Hawker p. 44
R I T

Software Engineering

Generalizations

The generalization relationship
generalizes the common behavior of
two or more use cases to create a new
parent use case

R. Kuehl/J. Scott Hawker p. 45
R I T

Software Engineering

Generalizations

 Use generalization when:
 Two or more use cases have commonalities in behavior,

structure, and purpose

 Common behavior leads to specialized behavior in flow steps

 These could be modeled as extensions

 Describe the shared parts in a new, often abstract,
use case, that is then specialized by child use cases
 The child use case inherits all behavior described for the parent

use case

 The description of a child use case needs to follow the description of
the parent use case in order to be considered complete

 The child use case event flow explains how the inherited parents
behavior is modified

 Only the child use case knows of the relationship between the two use
cases

R. Kuehl/J. Scott Hawker p. 46
R I T

Software Engineering

Differences Between Include and Generalization

 Think the difference between inheritance and a
sub-function

 Use case generalization:
 The execution of the children is dependent on the

structure and behavior of the parent (the reused part)

 The children share similarities in purpose and structure

 Include relationship:
 The execution of the base use case depends only on

the result of the function performed by the inclusion
use case (the reused part)

 The base use cases reusing the same inclusion can
have completely different purposes, but they need the
same function to be performed

R. Kuehl/J. Scott Hawker p. 47
R I T

Software Engineering

Generalizations Between Actors

 Several actors can play the same
role in a particular use case

 Actors with common characteristics
should be modeled by using actor-
generalizations

 A user can play several roles in
relation to the system (the user
corresponds to several actors)

 Represent the user by one actor who
inherits several actors

 Each inherited actor represents one
of the user's roles relative to the
system

A Teller and an Accountant, both

of whom check the balance of an

account, are seen as the same

external entity by the use case

that does the checking. The

shared role is modeled as an

actor, Balance Supervisor,

inherited by the two original

actors.

R. Kuehl/J. Scott Hawker p. 48
R I T

Software Engineering

Review the Use Case Model

 Review the contents and structure of the use case model

 Complete – all user roles, all tasks, understandable
descriptions

 Well structured – model is readable and understandable

 Don’t over do it – the model may become too complex and
less understandable

 Validate that the results of use case modeling conform to
the customer's view of the system

 Review participants should include the analyst,
stakeholders, users, and developers

 In practice the use case model may be transitional in
project longevity as requirements are identified

R. Kuehl/J. Scott Hawker p. 49
R I T

Software Engineering

“Edge” Use Cases

R. Kuehl/J. Scott Hawker p. 50
R I T

Software Engineering

What Are Edge Use Cases?

 Apply use case modeling to system features that
go beyond end user goals and requirements

 Why? Holistic system thinking

 To better understand and capture system quality
attribute requirements

 Leads to better system architecture and design

 Identifies boundary and exception test cases

 Candidate system features

 Misuse – malicious security scenarios

 What if, what can go wrong scenarios; e.g.,
exceptions, system safety

 System administration tasks

 System life cycle

R. Kuehl/J. Scott Hawker p. 51
R I T

Software Engineering

Misuse (Abuse) Cases

 Misuse Case: How the system shall respond to
illegitimate use

 Mis-Actor: Attacker or malicious user

 Undermine the assumptions and boundary conditions
of the system

 Identify common patterns of attack

 Derived use cases lead to system quality
requirements

 Apply normal use case style to misuse case
descriptions

R. Kuehl/J. Scott Hawker p. 52
R I T

Software Engineering

Misuse Case Analysis Pattern

 The misuse case analysis pattern:

 For a legitimate use case, identify misuse
cases that threaten legitimate use case
success

 Derive a use case to mitigate the misuse case
(as an included use case)

 What is the malicious actor’s response to the
mitigation use case? (included misuse case)

 Derive another mitigation use case to respond

 Continue play-counter play …

R. Kuehl/J. Scott Hawker p. 53
R I T

Software Engineering

Misuse Case Example

Bank Customer

Withdraw

Cash

Deposit

Funds

Transfer

Funds

Bank

Cashier

Login

Malicious User

Subvert Login

Steal Money

R. Kuehl/J. Scott Hawker p. 54
R I T

Software Engineering

Misuse Case Example

Bank Customer

Withdraw

Cash

Deposit

Funds

Transfer

Funds

Bank

Cashier

Login

Malicious User

Subvert Login

Validate Input

<<Include>>

