
R. Kuehl/J. Scott Hawker p. 1
R I T

Software Engineering

Use Case Modeling Techniques

From Universal Modeling Language (UML)

R. Kuehl/J. Scott Hawker p. 2
R I T

Software Engineering

Use Cases

 Interaction between a user and a system

 A complete and meaningful use

 Focus on value – how the system will be used to
satisfy a specific user goal

 Observable and testable functionality - “black
box” view of the system

 The first system functional decomposition

 All use cases = {all things the system must do}

 Understand the big picture

R. Kuehl/J. Scott Hawker p. 3
R I T

Software Engineering

Use-Case Modeling Phases

Three phases of requirements analysis:

1. Model the user roles – detailed actor descriptions

 Identify user goals for system interaction

2. Model (specify) requirements as use cases

 Use case diagrams – for context and reference

 Use case descriptions

3. Model use-case realizations

 An interaction of objects that realize the requirements

 Class diagrams and object interaction diagrams

 (Also known as robustness analysis, use case analysis, task
modeling, or scripting)

R. Kuehl/J. Scott Hawker p. 4
R I T

Software Engineering

UML Use-Case Modeling

 An actor represents anything that interacts
with the system

 A use case is a set of system actions that yields
an observable result of value to a particular
actor

Actor

UseCase

UseCase

Actor

<<Actor>>

People, external systems, devices

R. Kuehl/J. Scott Hawker p. 5
R I T

Software Engineering

Use-Case Diagram

 A use-case diagram shows relationships
between actors and use cases

 Relationships: “communicates with” (exchanges
data, signals, events)

View Grades

Student

Login

Register for Courses

CourseCatalog

<<Actor>>

System context

R. Kuehl/J. Scott Hawker p. 6
R I T

Software Engineering

Use Case Descriptions

 For each use case describe functional steps in sufficient
detail to …
 Enable (or represent) requirement specification

 Begin early design work

 Achieve stakeholder and user understanding and approval

 The details …
 Name and description

 Actors

 Primary flow of events (as related stories)

 Secondary alternative and/or exception flow of events

 System preconditions

 System post conditions

 Supplemental information – non-functional requirements

R. Kuehl/J. Scott Hawker p. 7
R I T

Software Engineering

“Why Use Cases at All?”

 A good compromise – use cases are semi-formal,
structured, but understandable stories (people like
stories)

 Use cases add value to analysis
 At first as a succinct outline of mainline features and capabilities

(get your head around the functionality)

 Later a basis for innovation, extension, revision of requirements

 Address exceptions – a large source of system
complexity

 Start functional decomposition that transitions to
requirement specifications and early design

 Good basis for pursuing related project information
– estimates, plans, user interface design, software
design, testing

R. Kuehl/J. Scott Hawker p. 8
R I T

Software Engineering

But Use Cases Have Limitations

 Too much detail – can be hard to work with

 Developers need use case supplemental
requirements to design

 Ancillary functionality such as system administration

 Non functional quality requirements and business rules

 Functional decomposition guidance for design
has limits

 May not be as effective for non-user interactive
systems

 Concurrent applications, batch processing, data
warehousing, computational intensive, etc.

R. Kuehl/J. Scott Hawker p. 9
R I T

Software Engineering

Use Case Example - ATM

9

:

Bank Customer

Withdraw

Cash

Deposit

Funds

Transfer

Funds

Refill

Machine

Bank

Maintenance Person

Cashier

R. Kuehl/J. Scott Hawker p. 10
R I T

Software Engineering

ATM Model: Withdraw Cash Use Case

1 Brief Description
This use case describes how the Bank Customer uses the ATM to withdraw money his/her
bank account.

2 Actors
2.1 Bank Customer
2.2 Bank

3 Preconditions
There is an active network connection to the Bank.
The ATM has cash available.

4 Basic Flow of Events
1. The use case begins when Bank Customer inserts their Bank Card.
2. Use Case: Validate User is performed.
3. The ATM displays the different alternatives that are available on this unit. [See Supporting
Requirement SR-xxx for list of alternatives]. In this case the Bank Customer always selects
“Withdraw Cash”.
4. The ATM prompts for an account. See Supporting Requirement SR-yyy for account types
that shall be supported.
5. The Bank Customer selects an account.
6. The ATM prompts for an amount.
7. The Bank Customer enters an amount.
8. Card ID, PIN, amount and account is sent to Bank as a transaction. The Bank Consortium
replies with a go/no go reply telling if the transaction is ok.
9. Then money is dispensed
10. The Bank Card is returned.
11. The receipt is printed
12. The use case ends successfully

R. Kuehl/J. Scott Hawker p. 11
R I T

Software Engineering

ATM Model: Withdraw Cash Use Case (2)

5 Alternative Flows

5.1 Invalid User

If in step 2 of the basic flow Bank Customer the use case: Validate User does not

complete successfully, then

1. the use case ends with a failure condition

5.2 Wrong account

If in step 8 of the basic flow the account selected by the Bank Customer is not

associated with this bank card, then

1. Tthe ATM shall display the message “Invalid Account – please try again”

2. The use case resumes at step 4

.

.

.

7 Post-conditions

7.1 Successful Completion

The user has received their cash and the internal logs have been updated.

7.2 Failure Condition

The logs have been updated accordingly.

R. Kuehl/J. Scott Hawker p. 12
R I T

Software Engineering

Developing the Use Case Model

 Steps

 Find Actors

 Find Use Cases

 Describe How Actors and Use Cases Interact

 Present the Use-Case Model in Use-Case
Diagrams

 Package Actors and Use Cases

 Develop a Survey of the Use-Case Model

 Evaluate Your Results

R. Kuehl/J. Scott Hawker p. 13
R I T

Software Engineering

Step: Find Actors

 Actor: Define a coherent set of user roles for system

interaction

 An individual or an external system

 Primary users for main functions

 Secondary users for ancillary functions

 Name the actor to clearly describe the actor’s role

 Briefly describe the actor

 Responsibilities and goals for what the system needs to

accomplish

 Capabilities (skills, environment, etc.) relevant to the system

R. Kuehl/J. Scott Hawker p. 14
R I T

Software Engineering

Step: Find Use Cases

 For each actor (human and not)

 What are the primary tasks the actor wants to perform?

 E.g., create, retrieve, update, delete data

 What are the secondary tasks the actor wants to
perform?

 E.g., system maintenance tasks

 What are the actor trigger events to initiate action
between actors and the system?

 Logically coherent tasks are use case candidates

R. Kuehl/J. Scott Hawker p. 15
R I T

Software Engineering

Step: Find Use Cases (cont)

 Name the use case: a verb phrase that represents
the user’s goal

 Briefly describe the purpose of the use case

 Outline the basic and alternative flow of events –
details follow

 Collect additional (non-functional) requirements as
supplementary specifications

 Iterate to add, remove, combine, and divide the use
cases

R. Kuehl/J. Scott Hawker p. 16
R I T

Software Engineering

Step: Describe How Actors and Use Cases Interact

 Establish which actors will interact with each use case

 For each actor-and-use-case pair

 Define, at the most, one communicates-association

 The flow of events and data to support the tasks

 The communicates-association navigation is bidirectional

 Briefly describe each communicates-association

R. Kuehl/J. Scott Hawker p. 17
R I T

Software Engineering

Step: Present the Use-Case Model

in Use Case Diagrams

 Illustrate the relationships among use cases and
actors, as well as among related use cases in
diagrams

Rent

Bike

Return

Bike

Manage

Bikes

Report

Lost Bike

Manage

Shops

Handle

Payments

Monitor

Rentals

Bike Rider

Bike Store Owner

Law Enforcement

Bike Rental

System

Customer

Payment Processing

System

<<Extends>>

R. Kuehl/J. Scott Hawker p. 18
R I T

Software Engineering

Step: Package Use Cases and Actors

 If the number of actors or use cases becomes too great,
divide them into use-case packages
 A collection of functionally related use cases and actors – think

functional sub-system
 Easier to understand and maintain the model
 Future architectural implications

 Packaging alternatives:
 Actor to use case relationships; 1:N or N:1

 Use case relationships:

 Manage common information

 Work or data flow sequences

 Most important

 Hierarchies (but breath before depth)

 Other criteria such as release packaging

R. Kuehl/J. Scott Hawker p. 19
R I T

Software Engineering

Use Case Package Example

There should be a use case diagram for each package

R. Kuehl/J. Scott Hawker p. 20
R I T

Software Engineering

Step: Develop a Survey of the Use-Case Model

 Write a descriptive summary (an abstract)

 The primary actors and their roles

 The primary use cases of the system (the reason the system
is built)

 Primary system workflow sequences

 Package/sub-package hierarchies

 System boundaries – What is in the system and external
dependencies

 The system's environment, for example, target platforms and
existing software

 Non-functional requirements not handled by the use-case
model – quality attributes

R. Kuehl/J. Scott Hawker p. 21
R I T

Software Engineering

Step: Evaluate Use-Case Model

 Are all essential actors and use cases
identified?

 Identify unnecessary actors or use cases

 Provide little or no value

 Use cases that should be combined for
greater value

 The flow of actor-use case interaction is
reasonably correct, complete, and
understandable at this stage

 The survey description of the use-case model
makes it understandable

R. Kuehl/J. Scott Hawker p. 22
R I T

Software Engineering

Detail a Use Case

R. Kuehl/J. Scott Hawker p. 23
R I T

Software Engineering

Detail Each Use Case

 Describe functional steps in sufficient detail to …
 Enable requirement specification

 Early design work to begin

 Achieve stakeholder and user understanding and
approval

 Steps
 Structure and detail the flow of events

 Describe preconditions

 Describe post conditions

 Describe any special requirements of the use case

 Describe any communication protocols [optional]

 Evaluate the results

R. Kuehl/J. Scott Hawker p. 24
R I T

Software Engineering

Basic Use Case Template

 Unique identifier

 [Metadata – e.g., author, priority, etc.]

 Name

 Actors

 Description

 Preconditions

 Post conditions

 Primary scenario of events

 Secondary (alternative and exceptional scenarios)

 Special requirements

 [Extension points]

R. Kuehl/J. Scott Hawker p. 25
R I T

Software Engineering

Style Considerations

 Choose the template structure and language
style ahead of time

 Many template styles – be consistent and
complete

 Describe the flow of events, not just the use
case's functionality or purpose.

 Self containment - avoid references to other
actors and use cases

 Do not describe the details of the user interface

 Do not discuss implementation technology

R. Kuehl/J. Scott Hawker p. 26
R I T

Software Engineering

Style Considerations (cont)

 Express in natural language, avoid code-like
constructs
- Simple, active action steps

- Concise and explicit well written sentences

- Minimalist, essential detail

 Make it understandable for customers, users,
and developers
 Use domain terminology , not technology or

methodology terminology; add a glossary

 Avoid the use of methodology-specific terminology,
such as “use case”, “actor”, and “signal”

 Avoid vague terminology such as "for example", "etc.
" and “the information“

R. Kuehl/J. Scott Hawker p. 27
R I T

Software Engineering

Style Considerations (cont)

 Breadth-Before-Depth – work on an overview of
use cases first and then progressively add detail

 Quitting-Time (when are we done?) – use cases
are complete (versus goals) and achieve review
approval

 Find the right user goal level; rule of thumb 5-10
steps; goal granularity

 Find the right balance for the number of use
cases

 Rule of thumb - no more than two dozen use cases

 Partition larger systems into packages

R. Kuehl/J. Scott Hawker p. 28
R I T

Software Engineering

Step: Detail the Flow of Events of a Use Case

 How and when the use case starts – the trigger event
 Trigger – the actor, the system, time

 How and when the use case terminates – success and
failure

 How the actors and the system interact
 Describe what the use case does for each actor action:

“When the user does …, the system does ….”

 Describe what the use case does for each system action:

“When the system does …, the user does ….”

 Data exchange between actors and use cases

 Information storage and retrieval

R. Kuehl/J. Scott Hawker p. 29
R I T

Software Engineering

Step: Detail the Flow of Events of a Use Case
(Continued)

 Structure the flow of events: main scenario plus
alternative flows

 Alternatives - branches in behavior from the main
scenario due to some condition (extensions)

 Alternative flows due to user or system action

 Exception conditions

 Where the most interesting system requirements are
found

R. Kuehl/J. Scott Hawker p. 30
R I T

Software Engineering

Step: Detail the Flow of Events of a Use Case
(Continued)

 Think of an alternative workflow as its own
stripped down use case

 Starting condition

 Sequence of action steps

 Completion state that ends in goal success or failure

 Avoid duplicating main flow steps in alternative
flows

 Reference main flow step branch

 Identify main flow return step or termination

R. Kuehl/J. Scott Hawker p. 31
R I T

Software Engineering

Structure the Flow of Events of the Use Case

Precondition and trigger event

Main Success Scenario (Actors Primary Goal)

M1

M2

.

.

.

MN

Alternative Flow of Events

(Optional “extension”, exception)
A1

A2

.

.

.

AN

Ends in success or failure

Ends in success or failure

Identify the branch location

and start condition

S1

S2

.

.

.

SN

Atomic flows – all or none,

always move forward

[Avoid branches, loops, parallelism]

Sequence of events

R. Kuehl/J. Scott Hawker p. 32
R I T

Software Engineering

Preconditions and Post Conditions

 A precondition is the state of
the system required before the
use case can be started

 A post condition is the state
the system can be in after the
use case has ended

 Identifying post conditions can
help describe use cases
themselves

 First define what the use
case is supposed to
achieve, the post condition

 Then describe how to reach
this condition (the flow of
events needed)

R. Kuehl/J. Scott Hawker p. 33
R I T

Software Engineering

Step: Describe Preconditions of the Use Case

 System state required to start the use case

 It is not the trigger event that starts the use case

 Avoid describing prior incidental activities that may have
happened

 Pre- or post condition states should be observable by
the user

 A precondition applies to the entire use case, not
only one sub flow

 (Although you can define preconditions and post
conditions at the sub flow level)

R. Kuehl/J. Scott Hawker p. 34
R I T

Software Engineering

Step: Describe Post Conditions of the Use Case

 Possible system states at the end of the use case

 Post conditions can also state system actions
performed at the end of the use case

 Post conditions should be true regardless of what
occurred in the use case

 Cover use case exceptions in the post condition
description

R. Kuehl/J. Scott Hawker p. 35
R I T

Software Engineering

Sequencing Use Cases with Pre/Post Conditions

 Best practice says you should not use pre-
and post conditions to create a dependency
sequence of use cases

 The sequentially dependent use cases should
be combined into a single use case

 Possible exceptions:
 When a common “sub-use-case” is factored out

 For example, a “Log In” use case

 Complexity – the combined use case is too large
but consider sub flows

R. Kuehl/J. Scott Hawker p. 36
R I T

Software Engineering

Step: Describe the Special

Requirements of the Use Case

 Related requirements not considered in the use
case scenarios

 Described in the Survey Description of the use
case

 Such requirements are likely to be nonfunctional
quality requirements or design constraints

 (Also called supplemental requirements)

R. Kuehl/J. Scott Hawker p. 37
R I T

Software Engineering

Step: Describe Communication Protocols
[Optional]

 Describe the “applications layer” communication
protocol if the actor is another system or
external hardware

 Specify if some existing protocol (perhaps a
standardized one) is to be used

 If the protocol is new, it will be fully described in
design

 The protocol may be expressed as the message
interaction through an established application
programming interface (API)

R. Kuehl/J. Scott Hawker p. 38
R I T

Software Engineering

Structure the Use Case Model

Decompose the model to enhance

understandability and maintainability

R. Kuehl/J. Scott Hawker p. 39
R I T

Software Engineering

Structuring the Use-Case Model

 Factor use case behavior into more abstract use
cases

 Identify common, optional, exceptional, or deferred
out of scope scenarios

 Possible relationships

 Include-Relationships Between Use Cases

 Extend-Relationships Between Use Cases

 Generalizations Between Use Cases

 Generalizations Between Actors

 Best performed after you have made your first
attempts at a use-case model

R. Kuehl/J. Scott Hawker p. 40
R I T

Software Engineering

Include-Relationships

The include-relationship exists
between a base use case and
subordinates

ATM

System

Use the include-relationship to factor

out behavior:
─ Subordinate to the primary purpose

of the base use case

─ Common for two or more use cases

─ (~ library module in programming)

R. Kuehl/J. Scott Hawker p. 41
R I T

Software Engineering

Include-Relationships

 The base use case owns the relationship to the
inclusion use case

 It depends on the behavior of the included use case

 Refer to the included use case in the step where the
inclusion is inserted

 Only the base use case knows about the inclusion use
case

 No inclusion use case knows what base use cases
include it

 An inclusion use case has a communication-
association to an actor only if its behavior
explicitly involves interaction with an actor

R. Kuehl/J. Scott Hawker p. 42
R I T

Software Engineering

Extend-Relationships

Extend-relationships branch
behavior from the use case main
scenario due to some condition
into sub use cases

Use case extensions made into
separate use cases
 Used in several places in the base use case

 Reduce base use case complexity to
improve readability

R. Kuehl/J. Scott Hawker p. 43
R I T

Software Engineering

Extend-Relationships

 Use extensions to:

 Show use case behavior that is optional or conditional from
the primary use case purpose

 Primary flow is “interrupted”

 Alternative flows due to user or system action

 Flows executed only under certain (sometimes
exceptional) conditions

 Allow new extending behavior to be added over time without
impacting the base use case

 The extension is conditional, its execution is
dependent on base use case flow

 Only the base and extending use cases knows of the
relationship between the two use cases

R. Kuehl/J. Scott Hawker p. 44
R I T

Software Engineering

Generalizations

The generalization relationship
generalizes the common behavior of
two or more use cases to create a new
parent use case

R. Kuehl/J. Scott Hawker p. 45
R I T

Software Engineering

Generalizations

 Use generalization when:
 Two or more use cases have commonalities in behavior,

structure, and purpose

 Common behavior leads to specialized behavior in flow steps

 These could be modeled as extensions

 Describe the shared parts in a new, often abstract,
use case, that is then specialized by child use cases
 The child use case inherits all behavior described for the parent

use case

 The description of a child use case needs to follow the description of
the parent use case in order to be considered complete

 The child use case event flow explains how the inherited parents
behavior is modified

 Only the child use case knows of the relationship between the two use
cases

R. Kuehl/J. Scott Hawker p. 46
R I T

Software Engineering

Differences Between Include and Generalization

 Think the difference between inheritance and a
sub-function

 Use case generalization:
 The execution of the children is dependent on the

structure and behavior of the parent (the reused part)

 The children share similarities in purpose and structure

 Include relationship:
 The execution of the base use case depends only on

the result of the function performed by the inclusion
use case (the reused part)

 The base use cases reusing the same inclusion can
have completely different purposes, but they need the
same function to be performed

R. Kuehl/J. Scott Hawker p. 47
R I T

Software Engineering

Generalizations Between Actors

 Several actors can play the same
role in a particular use case

 Actors with common characteristics
should be modeled by using actor-
generalizations

 A user can play several roles in
relation to the system (the user
corresponds to several actors)

 Represent the user by one actor who
inherits several actors

 Each inherited actor represents one
of the user's roles relative to the
system

A Teller and an Accountant, both

of whom check the balance of an

account, are seen as the same

external entity by the use case

that does the checking. The

shared role is modeled as an

actor, Balance Supervisor,

inherited by the two original

actors.

R. Kuehl/J. Scott Hawker p. 48
R I T

Software Engineering

Review the Use Case Model

 Review the contents and structure of the use case model

 Complete – all user roles, all tasks, understandable
descriptions

 Well structured – model is readable and understandable

 Don’t over do it – the model may become too complex and
less understandable

 Validate that the results of use case modeling conform to
the customer's view of the system

 Review participants should include the analyst,
stakeholders, users, and developers

 In practice the use case model may be transitional in
project longevity as requirements are identified

R. Kuehl/J. Scott Hawker p. 49
R I T

Software Engineering

“Edge” Use Cases

R. Kuehl/J. Scott Hawker p. 50
R I T

Software Engineering

What Are Edge Use Cases?

 Apply use case modeling to system features that
go beyond end user goals and requirements

 Why? Holistic system thinking

 To better understand and capture system quality
attribute requirements

 Leads to better system architecture and design

 Identifies boundary and exception test cases

 Candidate system features

 Misuse – malicious security scenarios

 What if, what can go wrong scenarios; e.g.,
exceptions, system safety

 System administration tasks

 System life cycle

R. Kuehl/J. Scott Hawker p. 51
R I T

Software Engineering

Misuse (Abuse) Cases

 Misuse Case: How the system shall respond to
illegitimate use

 Mis-Actor: Attacker or malicious user

 Undermine the assumptions and boundary conditions
of the system

 Identify common patterns of attack

 Derived use cases lead to system quality
requirements

 Apply normal use case style to misuse case
descriptions

R. Kuehl/J. Scott Hawker p. 52
R I T

Software Engineering

Misuse Case Analysis Pattern

 The misuse case analysis pattern:

 For a legitimate use case, identify misuse
cases that threaten legitimate use case
success

 Derive a use case to mitigate the misuse case
(as an included use case)

 What is the malicious actor’s response to the
mitigation use case? (included misuse case)

 Derive another mitigation use case to respond

 Continue play-counter play …

R. Kuehl/J. Scott Hawker p. 53
R I T

Software Engineering

Misuse Case Example

Bank Customer

Withdraw

Cash

Deposit

Funds

Transfer

Funds

Bank

Cashier

Login

Malicious User

Subvert Login

Steal Money

R. Kuehl/J. Scott Hawker p. 54
R I T

Software Engineering

Misuse Case Example

Bank Customer

Withdraw

Cash

Deposit

Funds

Transfer

Funds

Bank

Cashier

Login

Malicious User

Subvert Login

Validate Input

<<Include>>

